Schau vorbei!
spacecrumb GmbH
Robert-Bosch-Straße 7
64293 Darmstadt
Kontakt

Was können wir
für Sie tun?

Kontakt

Dieses Feld dient zur Validierung und sollte nicht verändert werden.
Newsletter

Nichts mehr verpassen!

Der spacecrumb Newsletter informiert Dich kostenlos über die wichtigsten Meldungen aus dem All.

Newsletter

Dieses Feld dient zur Validierung und sollte nicht verändert werden.
Veränderliche Sterne

Der Mira-Stern R Serpentis

R Serpentis ist ein langperiodischer Pulsationsveränderlicher des Mira-Typs. Wir finden ihn im Kopf der Schlange (Serpens Caput), dem westlichen Teil des Sternbilds Serpens, direkt unterhalb des auffälligen Sternendreiecks, das den Schlangenkopf repräsentiert. Der Veränderliche ist rund 900 Lichtjahre von unserer Erde entfernt; seine scheinbare HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit).Die HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit)., mit der ein HimmelskörperAllgemeiner Begriff für alle materiellen Objekte im Weltraum, wie zum Beispiel Sterne, Planeten, Kometen und Asteroiden. dem Beobachter erscheint, also ein Maß für die empfangene Strahlung des Himmelsobjekts. Die heute übliche logarithmische Skala für die scheinbare HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). basiert auf den bereits seit der Antike gebräuchlichen Größenklassen, nach denen der hellste Stern 0. Größe, die mit Augen gerade noch erkennbaren Sterne 6. Größe haben. Heute ist die Einheit MagnitudeEinheit für die scheinbare oder absolute HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). eines Gestirns. (Einheitenzeichen mag oder ein hochgestelltes m). Die historischen Begriffe „Größe“ für die HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). eines Sterns und „GrößenklasseEinheit für die scheinbare Helligkeit eines Gestirns. Da der historische Begriff „Größe“ für die Helligkeit eines Sterns nichts mit dessen physikalischer Größe zu tun hat, wird die Größenklasse heutzutage meistens mit Magnitude (Einheitenzeichen mag oder ein hochgestelltes m) bezeichnet. Auch der Begriff Helligkeitsklasse wird verwendet.“ für die Einheit der HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). werden nur noch selten benutzt, da sie nichts mit der physikalischen Größe eines Sterns zu tun haben., abgekürzt mag, üblich. Der Intensitätsunterschied zweier Sterne, die sich um genau 1 mag unterscheiden, beträgt einen Faktor 2,512. Ein Unterschied von 5 mag entspricht genau einem Intensitätsunterschied von 100. Objekte, die heller als 0 mag sind, haben negative Magnituden. So erreicht die Venus im größten Glanz −4,4 mag. variiert mit einer Periode von im Mittel 356 Tagen zwischen einem Maximalwert von 5,2 mag und einem Minimalwert von 14,4 mag.

Wie alle Mira-Sterne ist R Serpentis ein roter Riesenstern, dessen Entwicklungsphase im Hertzsprung-Russell-Diagramm (HRD) durch die Lage auf dem asymptotischen Riesenast gekennzeichnet ist. Die Dauer der Instabilität währt vermutlich nur um die 100 000 Jahre; das ist sehr kurz verglichen mit einem typischen Alter dieser Sterne zwischen 3 und 10 Milliarden Jahren.

Name R Serpentis

andere Bezeichnungen:

R Ser, HD 141850, HIP 77615, HR 5894

Objekttyp:

Pulsationsveränderlicher vom Mira-Typ

Sternbild:

Serpens

Position (J2000.0):

α = 15h 50m 41,7s, δ = +15° 08′ 01,1″

scheinbare Helligkeit:

5,2 – 14,4 mag

Periode:

356,4 Tage

Spektralklasse:

M5IIIe−M9e

Entfernung:

285 pc = 930 Lj

Regelmäßige Lichtkurve

Die Veränderlichkeit von R Serpentis hatte der Astronom Karl Ludwig Harding (1765 − 1834) in Göttingen entdeckt. Seit Jahrzehnten beobachten Amateurastronomen aus aller Welt diesen Mira-SternEin aus Gasen bestehender HimmelskörperAllgemeiner Begriff für alle materiellen Objekte im Weltraum, wie zum Beispiel Sterne, Planeten, Kometen und Asteroiden., der selbst leuchtet. Während der meisten Zeit ihres Dasein werden Sterne durch zwei widerstreitende Kräfte im Gleichgewicht gehalten: durch die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit., die den Stern zusammenzudrücken sucht, und durch den Strahlungsdruck, der durch Kernfusionsprozesse im Inneren entsteht und die Gaskugel auseinanderzutreiben versucht. Unterschiede zwischen den Sternen und ihren Entwicklungswegen kommen im Wesentlichen durch ihre unterschiedliche MasseDie Menge Materie, die ein Körper enthält. Sie ist eine grundlegende Eigenschaft der Materie und die Ursache der Anziehung von Materie über die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit.. zustande.. Die gemessene LichtkurveGrafische Darstellung des Helligkeitsverlaufs eines Himmelsobjekts mit veränderlicher HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). (zum Beispiel eines veränderlichen Sterns oder eines Kometen). zeigt, dass der Lichtwechsel sehr regelmäßig ist. Der Anstieg zum Maximum erfolgt dabei schneller als der nachfolgende Abstieg zum Minimum. Wie bei Mira-Sternen üblich, schwanken die Extremwerte der HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). zwischen benachbarten Zyklen. Nur selten übersteigt die Maximumshelligkeit 6 mag, so dass R Serpentis für das freie Auge unerreichbar bleibt. Mit einem Fernglas ist der Veränderliche jedoch über einen Zeitraum von knapp drei Monaten um das Maximum herum gut zu beobachten. Ein Teleskop von mindestens sechs Zentimeter Öffnung ist erforderlich, um den Veränderlichen auch während seiner lichtschwachen Phasen zu erkennen.

Seine letzten Helligkeitsmaxima erreichte R Serpentis im Mai 2020 und im Mai 2021 mit jeweils etwa 6,1 mag (siehe nebenstehende LichtkurveGrafische Darstellung des Helligkeitsverlaufs eines Himmelsobjekts mit veränderlicher HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). (zum Beispiel eines veränderlichen Sterns oder eines Kometen).). Da sich der Zeitpunkt des Maximums von JahrDie Dauer eines Umlaufs der Erde um die Sonne. Im bürgerlichen Sprachgebrauch der Zeitabschnitt, der in ganzen Tagen etwa einem Umlauf um die Sonne entspricht, also 365 Tage (366 Tage in einem Schaltjahr). Je nach Bezugspunkt am Himmel ergeben sich verschiedene Jahreslängen: Siderisches Jahr (Sternjahr): Das Zeitintervall, nach dem die mittlere Sonne bezüglich der Sterne wieder dieselbe Position am Himmel erreicht hat: 365,2563604167 Tage (365d 06h 09min 09,54sec). In diesem Zeitraum bewegt sich die Sonne um 360° relativ zu den Sternen. Tropisches Jahr (Sonnenjahr): Das Zeitintervall zwischen aufeinanderfolgenden Durchgängen der mittleren Sonne durch den Frühlingspunkt: 365,24219052 Tage (365d 05h 48min 45,261sec). Wegen der Präzession der Erdachse, die den Frühlingspunkt verschiebt, ist das tropische Jahr rund 20 Minuten kürzer als das siderische. In diesem Zeitraum bewegt sich die Sonne um 360° − 50,26″ relativ zu den Sternen. Da die mittlere ekliptikale Länge der Sonne auf den Frühlingspunkt bezogen wird, ist ein tropisches Jahr der Zeitraum, in dem die mittlere ekliptikale Länge der Sonne um 360° zunimmt. Anomalistisches Jahr: Das Zeitintervall zwischen aufeinanderfolgenden Durchgängen der Erde durch ihr Perihel: 365,259635864 Tage (365d 06h 13min 52,539sec). Wegen der Bahnstörungen durch die anderen Planeten, die das Perihel pro Jahr um 11,6 Bogensekunden verschieben, ist das anomalistische Jahr um knapp fünf Minuten länger als das siderische. In diesem Zeitraum bewegt sich die Sonne um 360° + 11,6″ relativ zu den Sternen. Kalenderjahr (bürgerliches Jahr): Die mittlere Länge des Jahres nach dem Gregorianischen Kalender: 365,2425 Tage (365d 05h 49min 12sec). Um in ganzen Tagen rechnen zu können, umfasst ein gewöhnliches Kalenderjahr 365 Tage, wobei nach einer Schaltregel gelegentlich ein weiterer Tag eingefügt wird, um das Kalenderjahr an das tropische Jahr anpassen zu können. zu JahrDie Dauer eines Umlaufs der Erde um die Sonne. Im bürgerlichen Sprachgebrauch der Zeitabschnitt, der in ganzen Tagen etwa einem Umlauf um die Sonne entspricht, also 365 Tage (366 Tage in einem Schaltjahr). Je nach Bezugspunkt am Himmel ergeben sich verschiedene Jahreslängen: Siderisches Jahr (Sternjahr): Das Zeitintervall, nach dem die mittlere Sonne bezüglich der Sterne wieder dieselbe Position am Himmel erreicht hat: 365,2563604167 Tage (365d 06h 09min 09,54sec). In diesem Zeitraum bewegt sich die Sonne um 360° relativ zu den Sternen. Tropisches Jahr (Sonnenjahr): Das Zeitintervall zwischen aufeinanderfolgenden Durchgängen der mittleren Sonne durch den Frühlingspunkt: 365,24219052 Tage (365d 05h 48min 45,261sec). Wegen der Präzession der Erdachse, die den Frühlingspunkt verschiebt, ist das tropische Jahr rund 20 Minuten kürzer als das siderische. In diesem Zeitraum bewegt sich die Sonne um 360° − 50,26″ relativ zu den Sternen. Da die mittlere ekliptikale Länge der Sonne auf den Frühlingspunkt bezogen wird, ist ein tropisches Jahr der Zeitraum, in dem die mittlere ekliptikale Länge der Sonne um 360° zunimmt. Anomalistisches Jahr: Das Zeitintervall zwischen aufeinanderfolgenden Durchgängen der Erde durch ihr Perihel: 365,259635864 Tage (365d 06h 13min 52,539sec). Wegen der Bahnstörungen durch die anderen Planeten, die das Perihel pro Jahr um 11,6 Bogensekunden verschieben, ist das anomalistische Jahr um knapp fünf Minuten länger als das siderische. In diesem Zeitraum bewegt sich die Sonne um 360° + 11,6″ relativ zu den Sternen. Kalenderjahr (bürgerliches Jahr): Die mittlere Länge des Jahres nach dem Gregorianischen Kalender: 365,2425 Tage (365d 05h 49min 12sec). Um in ganzen Tagen rechnen zu können, umfasst ein gewöhnliches Kalenderjahr 365 Tage, wobei nach einer Schaltregel gelegentlich ein weiterer Tag eingefügt wird, um das Kalenderjahr an das tropische Jahr anpassen zu können. nur um neun Tage zu früheren Daten verschiebt, der SternEin aus Gasen bestehender HimmelskörperAllgemeiner Begriff für alle materiellen Objekte im Weltraum, wie zum Beispiel Sterne, Planeten, Kometen und Asteroiden., der selbst leuchtet. Während der meisten Zeit ihres Dasein werden Sterne durch zwei widerstreitende Kräfte im Gleichgewicht gehalten: durch die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit., die den Stern zusammenzudrücken sucht, und durch den Strahlungsdruck, der durch Kernfusionsprozesse im Inneren entsteht und die Gaskugel auseinanderzutreiben versucht. Unterschiede zwischen den Sternen und ihren Entwicklungswegen kommen im Wesentlichen durch ihre unterschiedliche MasseDie Menge Materie, die ein Körper enthält. Sie ist eine grundlegende Eigenschaft der Materie und die Ursache der Anziehung von Materie über die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit.. zustande. aber bereits im April günstig am Abendhimmel steht, lassen sich die Maxima auch in den nächsten Jahren gut verfolgen.

lichtkurve r serpentis 1

Lichtkurve des Mira-Veränderlichen R Serpentis. Die scheinbare Helligkeit des pulsierenden Sterns schwankt mit einer Periode von etwa 356 Tagen um sieben bis acht Magnituden. Während der beiden letzten Maxima erreichte R Serpentis knapp die Sichtbarkeitsschwelle für das freie Auge. Die beobachteten Helligkeiten im Maximum liegen üblicherweise zwischen 5,2 und 7,9 mag. Im Minimum sinkt die Helligkeit auf einen Wert zwischen 12,9 und 14,4 mag. Jeder Messpunkt in dieser Lichtkurve entspricht einer visuellen Helligkeitsschätzung eines Amateurastronomen. (Bild: AAVSO)

Der Veränderliche R Serpentis liegt im Kopf der Schlange, etwas südlich der Verbindunglinie zwischen den Sternen Beta und Gamma Serpentis (β und γ Ser), die am Himmel 2,5° auseinanderliegen. Zum Zeitpunkt der Aufnahme betrug die HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). von R Serpentis nur 10 mag; ein kleiner Kreis markiert die Position des Veränderlichen. (Bild: Uwe Reichert)

R Serpentis Umgebung

Umgebungskarten dieser Art lassen sich auf der Website der AAVSO für R Serpentis und andere veränderliche SterneSterne, deren scheinbare Helligkeit nicht konstant ist, sondern zeitlich schwankt. Bei Bedeckungsveränderlichen ist die Ursache nicht physischer, sondern rein geometrischer Natur: Es sind Doppelsterne, die sich vom irdischen Beobachter aus betrachtet im Rhythmus ihres gegenseitigen Umlaufs bedecken. Die größte Klasse der physisch Veränderlichen sind die Pulsationsveränderlichen, die sich in einem späten Stadium der Sternentwicklung befinden. Ihre äußeren Schichten blähen sich mehr oder weniger periodisch auf und ziehen sich wieder zusammen, wobei sich auch die Oberflächentemperatur und die Leuchtkraft ändern. Je nach Periodenlänge und Form der Lichtkurve werden mehrere Untergruppen unterschieden, z.B. RR-Lyrae-Sterne, CepheidenOberbegriff für verschiedene Klassen von veränderlichen Sternen, die ihre Helligkeit aufgrund von Pulsationen ändern (Pulsationsveränderliche). Die klassischen Cepheiden, auch Delta-Cephei-Sterne genannt, haben regelmäßige Perioden (wenige Tage bis einige Wochen), die eng mit ihrer mittleren Leuchtkraft verknüpft sind: Je länger die Periode, desto höher die Leuchtkraft. Mit dieser Perioden-Leuchtkraft-Beziehung lässt sich aus der gemessenen Periode des Sterns und seiner mittleren scheinbaren Helligkeit seine Leuchtkraft und somit seine Entfernung ermitteln. Da Delta-Cephei-Sterne sehr hell leuchten und sich auch in Nachbargalaxien nachweisen lassen, sind sie ein wichtiger Indikator für die Entfernungsmessung. und Mirasterne. Das Verhalten von unregelmäßig oder eruptiv veränderlichen Sternen ist nicht vorherzusagen. Hierzu gehören z.B. die zu den Zwergnovae gezählten U-Geminorum-Sterne. R-Coronae-Borealis-Sterne wiederum sind Sterne, die gelegentlich Wolken von Kohlenstoff ausstoßen und deshalb ihre Helligkeit in nicht vorhersagbarer Weise reduzieren. erstellen. In einer Eingabemaske wählt man unter anderem den Sternnamen, die Größe des gewünschten Himmelsausschnitts und die GrenzgrößeDie scheinbare Helligkeit eines Sterns, der mit einem optischen Instrument unter besten Bedingungen gerade noch gesehen werden kann. Die Grenzgröße wird in Magnituden angegeben. der Sterne aus. In der hier gezeigten Karte ist Norden oben und Osten links; die Orientierung lässt sich auch für die Beobachtung am spiegelverkehrt abbildenden astronomischen Fernrohr einstellen. Die Helligkeiten von geeigneten Vergleichssternen sind in den Karten in Einheiten von Zehntel Magnituden angegeben. So bedeutet z.B. die „73“ eine visuelle HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). von 7,3 mag. Dieser hellste SternEin aus Gasen bestehender HimmelskörperAllgemeiner Begriff für alle materiellen Objekte im Weltraum, wie zum Beispiel Sterne, Planeten, Kometen und Asteroiden., der selbst leuchtet. Während der meisten Zeit ihres Dasein werden Sterne durch zwei widerstreitende Kräfte im Gleichgewicht gehalten: durch die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit., die den Stern zusammenzudrücken sucht, und durch den Strahlungsdruck, der durch Kernfusionsprozesse im Inneren entsteht und die Gaskugel auseinanderzutreiben versucht. Unterschiede zwischen den Sternen und ihren Entwicklungswegen kommen im Wesentlichen durch ihre unterschiedliche MasseDie Menge Materie, die ein Körper enthält. Sie ist eine grundlegende Eigenschaft der Materie und die Ursache der Anziehung von Materie über die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit.. zustande. auf der Karte ist HD 142093; das Gesichtsfeld der Karte beträgt 1°. Die Notation in Zehntel Magnituden wird gewählt, um eine Verwechslung des Dezimalpunkts mit einem SternEin aus Gasen bestehender HimmelskörperAllgemeiner Begriff für alle materiellen Objekte im Weltraum, wie zum Beispiel Sterne, Planeten, Kometen und Asteroiden., der selbst leuchtet. Während der meisten Zeit ihres Dasein werden Sterne durch zwei widerstreitende Kräfte im Gleichgewicht gehalten: durch die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit., die den Stern zusammenzudrücken sucht, und durch den Strahlungsdruck, der durch Kernfusionsprozesse im Inneren entsteht und die Gaskugel auseinanderzutreiben versucht. Unterschiede zwischen den Sternen und ihren Entwicklungswegen kommen im Wesentlichen durch ihre unterschiedliche MasseDie Menge Materie, die ein Körper enthält. Sie ist eine grundlegende Eigenschaft der Materie und die Ursache der Anziehung von Materie über die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit.. zustande. zu vermeiden. (Bild: AAVSO)

umgebungskarte r serpentis
Cookie-Einstellungen
Auf dieser Website werden Cookie verwendet. Diese werden für den Betrieb der Website benötigt oder helfen uns dabei, die Website zu verbessern.
Alle Cookies zulassen
Auswahl speichern
Individuelle Einstellungen
Individuelle Einstellungen
Dies ist eine Übersicht aller Cookies, die auf der Website verwendet werden. Sie haben die Möglichkeit, individuelle Cookie-Einstellungen vorzunehmen. Geben Sie einzelnen Cookies oder ganzen Gruppen Ihre Einwilligung. Essentielle Cookies lassen sich nicht deaktivieren.
Speichern
Abbrechen
Essenziell (1)
Essenzielle Cookies werden für die grundlegende Funktionalität der Website benötigt.
Cookies anzeigen
Statistik (1)
Statistik Cookies tracken den Nutzer und das dazugehörige Surfverhalten um die Nutzererfahrung zu verbessern.
Cookies anzeigen