Schau vorbei!
spacecrumb GmbH
Robert-Bosch-Straße 7
64293 Darmstadt
Kontakt

Was können wir
für Sie tun?

Kontakt

Dieses Feld dient zur Validierung und sollte nicht verändert werden.
Newsletter

Nichts mehr verpassen!

Der spacecrumb Newsletter informiert Dich kostenlos über die wichtigsten Meldungen aus dem All.

Newsletter

Dieses Feld dient zur Validierung und sollte nicht verändert werden.
Nebel

NGC 7662 – ein blauer Schneeball

Etwa 5700 Lichtjahre von der Erde entfernt im Sternbild Andromeda befindet sich der planetarische NebelWolken aus interstellarem Gas und Staub mit diffusem, nicht scharf begrenztem Erscheinungsbild. Emissionsnebel werden durch nahe stehende heiße Sterne zum Leuchten angeregt, die das Gas ionisieren, wobei das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. in Form von Emissionslinien bei einigen wenigen Wellenlängen ausgesandt wird (insbesondere die H-Alpha-Linie des Wasserstoffs). Reflexionsnebel leuchten nicht selbst, sondern der in ihnen enthaltene Staub reflektiert das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. nahe stehender Sterne. Dunkelnebel haben keine beleuchtenden oder ionisierenden Sterne in der Nähe; sie sind nur sichtbar, wenn sie das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. dahinter stehender Sterne verdecken und so scheinbar ein Loch in einem sternenreichen Himmelsfeld bilden. In Nebeln können durch Abkühlung und Kollaps von Teilregionen der Gas- und Staubwolken neue Sterne entstehen. NGC 7662, der auch als Caldwell 22 bekannt ist. Amateurastronomen haben den Namen Blauer Schneeball geprägt.

Mit einer scheinbaren HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). von 8,3 mag ist der NebelWolken aus interstellarem Gas und Staub mit diffusem, nicht scharf begrenztem Erscheinungsbild. Emissionsnebel werden durch nahe stehende heiße Sterne zum Leuchten angeregt, die das Gas ionisieren, wobei das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. in Form von Emissionslinien bei einigen wenigen Wellenlängen ausgesandt wird (insbesondere die H-Alpha-Linie des Wasserstoffs). Reflexionsnebel leuchten nicht selbst, sondern der in ihnen enthaltene Staub reflektiert das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. nahe stehender Sterne. Dunkelnebel haben keine beleuchtenden oder ionisierenden Sterne in der Nähe; sie sind nur sichtbar, wenn sie das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. dahinter stehender Sterne verdecken und so scheinbar ein Loch in einem sternenreichen Himmelsfeld bilden. In Nebeln können durch Abkühlung und Kollaps von Teilregionen der Gas- und Staubwolken neue Sterne entstehen. bereits mit einem Fernglas als bläulicher SternEin aus Gasen bestehender HimmelskörperAllgemeiner Begriff für alle materiellen Objekte im Weltraum, wie zum Beispiel Sterne, Planeten, Kometen und Asteroiden., der selbst leuchtet. Während der meisten Zeit ihres Dasein werden Sterne durch zwei widerstreitende Kräfte im Gleichgewicht gehalten: durch die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit., die den Stern zusammenzudrücken sucht, und durch den Strahlungsdruck, der durch Kernfusionsprozesse im Inneren entsteht und die Gaskugel auseinanderzutreiben versucht. Unterschiede zwischen den Sternen und ihren Entwicklungswegen kommen im Wesentlichen durch ihre unterschiedliche MasseDie Menge Materie, die ein Körper enthält. Sie ist eine grundlegende Eigenschaft der Materie und die Ursache der Anziehung von Materie über die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit.. zustande. zu erkennen. Doch erst bei hoher Vergrößerung im Fernrohr offenbart sich dem visuellen Beobachter die ausgedehnte rundliche Form des Nebels. Visuell sichtbar ist der helle innere Bereich des Nebels mit Abmessungen von 12″ × 18″. Während mit einem 15-cm-Teleskop der NebelWolken aus interstellarem Gas und Staub mit diffusem, nicht scharf begrenztem Erscheinungsbild. Emissionsnebel werden durch nahe stehende heiße Sterne zum Leuchten angeregt, die das Gas ionisieren, wobei das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. in Form von Emissionslinien bei einigen wenigen Wellenlängen ausgesandt wird (insbesondere die H-Alpha-Linie des Wasserstoffs). Reflexionsnebel leuchten nicht selbst, sondern der in ihnen enthaltene Staub reflektiert das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. nahe stehender Sterne. Dunkelnebel haben keine beleuchtenden oder ionisierenden Sterne in der Nähe; sie sind nur sichtbar, wenn sie das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. dahinter stehender Sterne verdecken und so scheinbar ein Loch in einem sternenreichen Himmelsfeld bilden. In Nebeln können durch Abkühlung und Kollaps von Teilregionen der Gas- und Staubwolken neue Sterne entstehen. als bläulicher Fleck zu sehen ist, sind Teleskope mit einem Spiegeldurchmesser von mehr als 40 cm nötig, um Helligkeits- und Farbunterschiede im NebelWolken aus interstellarem Gas und Staub mit diffusem, nicht scharf begrenztem Erscheinungsbild. Emissionsnebel werden durch nahe stehende heiße Sterne zum Leuchten angeregt, die das Gas ionisieren, wobei das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. in Form von Emissionslinien bei einigen wenigen Wellenlängen ausgesandt wird (insbesondere die H-Alpha-Linie des Wasserstoffs). Reflexionsnebel leuchten nicht selbst, sondern der in ihnen enthaltene Staub reflektiert das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. nahe stehender Sterne. Dunkelnebel haben keine beleuchtenden oder ionisierenden Sterne in der Nähe; sie sind nur sichtbar, wenn sie das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. dahinter stehender Sterne verdecken und so scheinbar ein Loch in einem sternenreichen Himmelsfeld bilden. In Nebeln können durch Abkühlung und Kollaps von Teilregionen der Gas- und Staubwolken neue Sterne entstehen. wahrzunehmen. Der 12,5 mag helle Zentralstern ist visuell nur schwer auszumachen, weil sein LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. von der hohen Flächenhelligkeit des Nebels überdeckt wird. Auf fotografischen Aufnahmen zeichnet er sich jedoch gut ab. Beispiele für visuelle Beobachtungen mit Teleskopen unterschiedlicher Größe finden sich auf der Website von Amateurastronomen aus der Schweiz.

NGC7662 c22 HST

Aufnahmen mit dem Weltraumteleskop Hubble zeigen zahlreiche Details in der Struktur des planetarischen Nebels NGC 7662. Visuell sichtbar ist nur der helle innere Bereich des Nebels. (Bild: NASA, ESA und A. Hajian/University of Waterloo)

Die blaue Farbe des Nebels ist auf die türkisfarbenen Emissionslinien des zweifach ionisierten Sauerstoffs (O-III) zurückzuführen. Angeregt wird das Leuchten des Sauerstoffs von der energiereichen StrahlungDie Ausbreitung von EnergieEine fundamentale physikalische Größe, welche die Fähigkeit eines Systems beschreibt, Arbeit zu verrichten. Die Gesamtenergie eines abgeschlossenen Systems bleibt immer konstant (Energieerhaltungssatz), doch können einzelne Energieformen in andere umgewandelt werden. im Raum in Form von elektromagnetischen Wellen oder atomaren Teilchen. elektromagnetische WellenStrahlung aus magnetischen und elektrischen Feldern, die sich wellenförmig ausbreitet. breiten sich stets mit LichtgeschwindigkeitDie Ausbreitungsgeschwindigkeit elektromagnetischer Strahlung im Vakuum, eine der wichtigsten Naturkonstanten. Per Definition gilt: Lichtgeschwindigkeit c = 299 792 458 Meter pro Sekunde. In lichtdurchlässigen Materialien ist die Ausbreitungsgeschwindigkeit cn wegen des Brechungsindex n kleiner: cn = c/n. Die Lichtgeschwindigkeit ist die höchste Geschwindigkeit, mit der sich ein Signal ausbreiten kann. aus. Teilchenstrahlung kann sich unterhalb der LichtgeschwindigkeitDie Ausbreitungsgeschwindigkeit elektromagnetischer Strahlung im Vakuum, eine der wichtigsten Naturkonstanten. Per Definition gilt: Lichtgeschwindigkeit c = 299 792 458 Meter pro Sekunde. In lichtdurchlässigen Materialien ist die Ausbreitungsgeschwindigkeit cn wegen des Brechungsindex n kleiner: cn = c/n. Die Lichtgeschwindigkeit ist die höchste Geschwindigkeit, mit der sich ein Signal ausbreiten kann. mit sehr unterschiedlicher Geschwindigkeit ausbreiten, die von der kinetischen EnergieEine fundamentale physikalische Größe, welche die Fähigkeit eines Systems beschreibt, Arbeit zu verrichten. Die Gesamtenergie eines abgeschlossenen Systems bleibt immer konstant (Energieerhaltungssatz), doch können einzelne Energieformen in andere umgewandelt werden. der Partikel abhängt. Die Analyse der Strahlung kosmischer Objekte ist für Astronomen die wichtigste Methode, um Informationen über diese HimmelskörperAllgemeiner Begriff für alle materiellen Objekte im Weltraum, wie zum Beispiel Sterne, Planeten, Kometen und Asteroiden. zu bekommen., die der Zentralstern des Nebels, ein heißer Weißer ZwergEin kompakter SternEin aus Gasen bestehender HimmelskörperAllgemeiner Begriff für alle materiellen Objekte im Weltraum, wie zum Beispiel Sterne, Planeten, Kometen und Asteroiden., der selbst leuchtet. Während der meisten Zeit ihres Dasein werden Sterne durch zwei widerstreitende Kräfte im Gleichgewicht gehalten: durch die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit., die den Stern zusammenzudrücken sucht, und durch den Strahlungsdruck, der durch Kernfusionsprozesse im Inneren entsteht und die Gaskugel auseinanderzutreiben versucht. Unterschiede zwischen den Sternen und ihren Entwicklungswegen kommen im Wesentlichen durch ihre unterschiedliche MasseDie Menge Materie, die ein Körper enthält. Sie ist eine grundlegende Eigenschaft der Materie und die Ursache der Anziehung von Materie über die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit.. zustande. mit ungefähr einer Sonnenmasse, der aber nur etwa so groß ist wie die Erde. Durch seine hohe Dichte (etwa 1000 kg pro cm3) unterscheidet er sich wesentlich von normalen Sternen. Weiße Zwerge entstehen als Endprodukt von Sternen mit einer Anfangsmasse von weniger als acht Sonnenmassen, wenn diese nach dem Durchlaufen der Rote-Riesen-Phase ihren Kernbrennstoff verbraucht haben und ihre äußere Hülle abstoßen. Die MaterieJede Art von Stoff oder Körper, der aus Atomen und deren Grundbausteinen aufgebaut ist. im ehemaligen Zentralbereich des Sterns wird dabei so stark zusammengedrückt, dass der Zwischenraum zwischen Atomkernen und ihrer Elektronenhülle verloren geht. Stabilisiert wird ein Weißer Zwerg durch einen quantenmechanischen Effekt, der Elektronenentartung. Der dadurch verursachte Entartungsdruck tritt an die Stelle des thermischen Drucks bei normalen Sternen und bewahrt den Weißen Zwerg vor dem weiteren Kollaps infolge seiner eigenen GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit.. Weiße Zwerge sind gewissermaßen die Leichen ehemaliger Sterne, die keine EnergieEine fundamentale physikalische Größe, welche die Fähigkeit eines Systems beschreibt, Arbeit zu verrichten. Die Gesamtenergie eines abgeschlossenen Systems bleibt immer konstant (Energieerhaltungssatz), doch können einzelne Energieformen in andere umgewandelt werden. mehr umwandeln, aber die vorhandene EnergieEine fundamentale physikalische Größe, welche die Fähigkeit eines Systems beschreibt, Arbeit zu verrichten. Die Gesamtenergie eines abgeschlossenen Systems bleibt immer konstant (Energieerhaltungssatz), doch können einzelne Energieformen in andere umgewandelt werden. über viele Milliarden Jahre lang langsam in Form von elektromagnetischer StrahlungDie Ausbreitung von EnergieEine fundamentale physikalische Größe, welche die Fähigkeit eines Systems beschreibt, Arbeit zu verrichten. Die Gesamtenergie eines abgeschlossenen Systems bleibt immer konstant (Energieerhaltungssatz), doch können einzelne Energieformen in andere umgewandelt werden. im Raum in Form von elektromagnetischen Wellen oder atomaren Teilchen. elektromagnetische WellenStrahlung aus magnetischen und elektrischen Feldern, die sich wellenförmig ausbreitet. breiten sich stets mit LichtgeschwindigkeitDie Ausbreitungsgeschwindigkeit elektromagnetischer Strahlung im Vakuum, eine der wichtigsten Naturkonstanten. Per Definition gilt: Lichtgeschwindigkeit c = 299 792 458 Meter pro Sekunde. In lichtdurchlässigen Materialien ist die Ausbreitungsgeschwindigkeit cn wegen des Brechungsindex n kleiner: cn = c/n. Die Lichtgeschwindigkeit ist die höchste Geschwindigkeit, mit der sich ein Signal ausbreiten kann. aus. Teilchenstrahlung kann sich unterhalb der LichtgeschwindigkeitDie Ausbreitungsgeschwindigkeit elektromagnetischer Strahlung im Vakuum, eine der wichtigsten Naturkonstanten. Per Definition gilt: Lichtgeschwindigkeit c = 299 792 458 Meter pro Sekunde. In lichtdurchlässigen Materialien ist die Ausbreitungsgeschwindigkeit cn wegen des Brechungsindex n kleiner: cn = c/n. Die Lichtgeschwindigkeit ist die höchste Geschwindigkeit, mit der sich ein Signal ausbreiten kann. mit sehr unterschiedlicher Geschwindigkeit ausbreiten, die von der kinetischen EnergieEine fundamentale physikalische Größe, welche die Fähigkeit eines Systems beschreibt, Arbeit zu verrichten. Die Gesamtenergie eines abgeschlossenen Systems bleibt immer konstant (Energieerhaltungssatz), doch können einzelne Energieformen in andere umgewandelt werden. der Partikel abhängt. Die Analyse der Strahlung kosmischer Objekte ist für Astronomen die wichtigste Methode, um Informationen über diese HimmelskörperAllgemeiner Begriff für alle materiellen Objekte im Weltraum, wie zum Beispiel Sterne, Planeten, Kometen und Asteroiden. zu bekommen. ins Universum abgeben., aussendet. Dieser Weiße Zwerg mit einer Oberflächentemperatur von vermutlich 95 000 Kelvin ist der Rest eines einstigen Riesensterns, der am Ende seines Daseins seine äußeren Gashüllen ins All ausgestoßen hat, die nun als planetarischer NebelWolken aus interstellarem Gas und Staub mit diffusem, nicht scharf begrenztem Erscheinungsbild. Emissionsnebel werden durch nahe stehende heiße Sterne zum Leuchten angeregt, die das Gas ionisieren, wobei das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. in Form von Emissionslinien bei einigen wenigen Wellenlängen ausgesandt wird (insbesondere die H-Alpha-Linie des Wasserstoffs). Reflexionsnebel leuchten nicht selbst, sondern der in ihnen enthaltene Staub reflektiert das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. nahe stehender Sterne. Dunkelnebel haben keine beleuchtenden oder ionisierenden Sterne in der Nähe; sie sind nur sichtbar, wenn sie das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. dahinter stehender Sterne verdecken und so scheinbar ein Loch in einem sternenreichen Himmelsfeld bilden. In Nebeln können durch Abkühlung und Kollaps von Teilregionen der Gas- und Staubwolken neue Sterne entstehen.NebelWolken aus interstellarem Gas und Staub mit diffusem, nicht scharf begrenztem Erscheinungsbild. Emissionsnebel werden durch nahe stehende heiße Sterne zum Leuchten angeregt, die das Gas ionisieren, wobei das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. in Form von Emissionslinien bei einigen wenigen Wellenlängen ausgesandt wird (insbesondere die H-Alpha-Linie des Wasserstoffs). Reflexionsnebel leuchten nicht selbst, sondern der in ihnen enthaltene Staub reflektiert das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. nahe stehender Sterne. Dunkelnebel haben keine beleuchtenden oder ionisierenden Sterne in der Nähe; sie sind nur sichtbar, wenn sie das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. dahinter stehender Sterne verdecken und so scheinbar ein Loch in einem sternenreichen Himmelsfeld bilden. In Nebeln können durch Abkühlung und Kollaps von Teilregionen der Gas- und Staubwolken neue Sterne entstehen., der aus der abgestoßenen Hülle eines Sterns entstanden ist und diesen umgibt. Planetarische NebelWolken aus interstellarem Gas und Staub mit diffusem, nicht scharf begrenztem Erscheinungsbild. Emissionsnebel werden durch nahe stehende heiße Sterne zum Leuchten angeregt, die das Gas ionisieren, wobei das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. in Form von Emissionslinien bei einigen wenigen Wellenlängen ausgesandt wird (insbesondere die H-Alpha-Linie des Wasserstoffs). Reflexionsnebel leuchten nicht selbst, sondern der in ihnen enthaltene Staub reflektiert das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. nahe stehender Sterne. Dunkelnebel haben keine beleuchtenden oder ionisierenden Sterne in der Nähe; sie sind nur sichtbar, wenn sie das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. dahinter stehender Sterne verdecken und so scheinbar ein Loch in einem sternenreichen Himmelsfeld bilden. In Nebeln können durch Abkühlung und Kollaps von Teilregionen der Gas- und Staubwolken neue Sterne entstehen. haben nichts mit Planeten zu tun; frühe Teleskopbeobachter gaben ihnen den Namen wegen ihres scheibchenförmigen Aussehens. Die Formen von planetarischen Nebeln sind sehr vielfältig und reichen von Kreisen über Kugelschalen bis zu Doppelkeulen. Durch die energiereiche UV-Strahlung des Zentralsterns werden planetarische NebelWolken aus interstellarem Gas und Staub mit diffusem, nicht scharf begrenztem Erscheinungsbild. Emissionsnebel werden durch nahe stehende heiße Sterne zum Leuchten angeregt, die das Gas ionisieren, wobei das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. in Form von Emissionslinien bei einigen wenigen Wellenlängen ausgesandt wird (insbesondere die H-Alpha-Linie des Wasserstoffs). Reflexionsnebel leuchten nicht selbst, sondern der in ihnen enthaltene Staub reflektiert das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. nahe stehender Sterne. Dunkelnebel haben keine beleuchtenden oder ionisierenden Sterne in der Nähe; sie sind nur sichtbar, wenn sie das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. dahinter stehender Sterne verdecken und so scheinbar ein Loch in einem sternenreichen Himmelsfeld bilden. In Nebeln können durch Abkühlung und Kollaps von Teilregionen der Gas- und Staubwolken neue Sterne entstehen. bei einzelnen Wellenlängen zum Leuchten angeregt; sie zeigen deshalb ein EmissionsspektrumEin Spektrum einer Lichtquelle, das aus hellen Linien oder Banden besteht. Heiße Körper senden ein kontinuierliches Emissionsspektrum aus, während leuchtende Gase geringer Dichte einzelne Spektrallinien emittieren, deren Wellenlängen für das jeweilige Element charakteristisch sind.. sichtbar sind.

Die nebenstehende Aufnahme, gewonnen mit dem Weltraumteleskop Hubble, zeigt den NebelWolken aus interstellarem Gas und Staub mit diffusem, nicht scharf begrenztem Erscheinungsbild. Emissionsnebel werden durch nahe stehende heiße Sterne zum Leuchten angeregt, die das Gas ionisieren, wobei das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. in Form von Emissionslinien bei einigen wenigen Wellenlängen ausgesandt wird (insbesondere die H-Alpha-Linie des Wasserstoffs). Reflexionsnebel leuchten nicht selbst, sondern der in ihnen enthaltene Staub reflektiert das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. nahe stehender Sterne. Dunkelnebel haben keine beleuchtenden oder ionisierenden Sterne in der Nähe; sie sind nur sichtbar, wenn sie das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. dahinter stehender Sterne verdecken und so scheinbar ein Loch in einem sternenreichen Himmelsfeld bilden. In Nebeln können durch Abkühlung und Kollaps von Teilregionen der Gas- und Staubwolken neue Sterne entstehen. in einem Detailreichtum, wie ihn kein visueller Beobachter je wahrnehmen kann. Auch die Farbgebung ist in gewisser Weise suggestiv, denn den mit verschiedenen Filtern aufgenommenen Wellenlängenbereichen lassen sich in der nachträglichen Bildbearbeitung recht willkürlich Farben zuordnen. Es gibt sogar eine Aufnahme von NGC 7662 mit dem Hubble-Teleskop, die den NebelWolken aus interstellarem Gas und Staub mit diffusem, nicht scharf begrenztem Erscheinungsbild. Emissionsnebel werden durch nahe stehende heiße Sterne zum Leuchten angeregt, die das Gas ionisieren, wobei das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. in Form von Emissionslinien bei einigen wenigen Wellenlängen ausgesandt wird (insbesondere die H-Alpha-Linie des Wasserstoffs). Reflexionsnebel leuchten nicht selbst, sondern der in ihnen enthaltene Staub reflektiert das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. nahe stehender Sterne. Dunkelnebel haben keine beleuchtenden oder ionisierenden Sterne in der Nähe; sie sind nur sichtbar, wenn sie das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. dahinter stehender Sterne verdecken und so scheinbar ein Loch in einem sternenreichen Himmelsfeld bilden. In Nebeln können durch Abkühlung und Kollaps von Teilregionen der Gas- und Staubwolken neue Sterne entstehen. grün erscheinen lässt. In dem hier gezeigten Foto ist die Farbe Blau den Emissionslinien des zweifach ionisierten Sauerstoffs zugeordnet. Dieser Farbanteil entspricht dem visuell wahrnehmbaren LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. des Nebels. Die hier rot eingefärbten fetzenartigen Strukturen am Rand des Nebels bestehen aus einfach ionisiertem Stickstoff (N-II). Es sind Gasmassen, die der einstige Riesenstern offenbar in einem letzten Aufzucken mit höherer Geschwindigkeit ausgestoßen hat und die nun die zuvor abgestoßenen Gasmassen mit Überschallgeschwindigkeit durchpflügen. Ihr Leuchten ist zu schwach, um von visuellen Beobachtern wahrgenommen zu werden.

Umgebung NGC7662 beschriftet

Umgebung von NGC 7662. Das Foto zeigt einen Ausschnitt aus dem nordwestlichen Bereich des Sternbilds Andromeda. Um den planetarischen Nebel zu finden, sucht man zunächst die Y-förmige Konfiguration aus den Sternen ι, κ, λ und ψ And, deren Helligkeit zwischen 4 und 5 mag beträgt. Ausgehend von ι And (4,3 mag) schwenkt man das Teleskop etwa 2° nach Westen, um zu dem Stern 13 And (5,7 mag) zu gelangen. Von diesem aus liegt NGC 7662 knapp 30 Bogenminuten in südwestlicher Richtung. Bei niedriger Vergrößerung sollte er sich im Okular wie ein leicht unscharf fokussierter Stern bemerkbar machen. (Bild: Uwe Reichert)

Name NGC 7662

andere Bezeichnungen:

Caldwell 22, Copeland’s Blue Snowball

Objekttyp:

planetarischer Nebel

Sternbild:

Andromeda

Position (J2000.0):

α = 23h 25m 53,6s, δ = +42° 32′ 06″

scheinbare Helligkeit:

8,3 mag

Winkeldurchmesser:

12″ × 18″ (visuell)

Entfernung:

1800 pc = 5700 Lj

Zentralstern:

HD 220733 (12,5 mag)

Cookie-Einstellungen
Auf dieser Website werden Cookie verwendet. Diese werden für den Betrieb der Website benötigt oder helfen uns dabei, die Website zu verbessern.
Alle Cookies zulassen
Auswahl speichern
Individuelle Einstellungen
Individuelle Einstellungen
Dies ist eine Übersicht aller Cookies, die auf der Website verwendet werden. Sie haben die Möglichkeit, individuelle Cookie-Einstellungen vorzunehmen. Geben Sie einzelnen Cookies oder ganzen Gruppen Ihre Einwilligung. Essentielle Cookies lassen sich nicht deaktivieren.
Speichern
Abbrechen
Essenziell (1)
Essenzielle Cookies werden für die grundlegende Funktionalität der Website benötigt.
Cookies anzeigen
Statistik (1)
Statistik Cookies tracken den Nutzer und das dazugehörige Surfverhalten um die Nutzererfahrung zu verbessern.
Cookies anzeigen