Der spacecrumb Newsletter informiert Dich kostenlos über die wichtigsten Meldungen aus dem All.
BL Lac
Die Geheimnisse des Universums werden nicht immer in überraschenden, bahnbrechenden Entdeckungen enträtselt. Oft lüftet sich der Schleier in kleinen, langsamen Schritten, und manchmal dauert es Jahrzehnte, bis das vollständige Bild freigelegt ist. Die Erforschung des Himmelsobjekts BL Lacertae ist dafür ein gutes Beispiel. Einst als unbedeutender Beifang in die astronomischen Kataloge aufgenommen, entpuppte sich der vermeintliche veränderliche SternEin aus Gasen bestehender HimmelskörperAllgemeiner Begriff für alle materiellen Objekte im Weltraum, wie zum Beispiel Sterne, Planeten, Kometen und Asteroiden., der selbst leuchtet. Während der meisten Zeit ihres Dasein werden Sterne durch zwei widerstreitende Kräfte im Gleichgewicht gehalten: durch die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit., die den Stern zusammenzudrücken sucht, und durch den Strahlungsdruck, der durch Kernfusionsprozesse im Inneren entsteht und die Gaskugel auseinanderzutreiben versucht. Unterschiede zwischen den Sternen und ihren Entwicklungswegen kommen im Wesentlichen durch ihre unterschiedliche MasseDie Menge Materie, die ein Körper enthält. Sie ist eine grundlegende Eigenschaft der Materie und die Ursache der Anziehung von Materie über die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit.. zustande. als eine der größten Energieschleudern im Universum.
Anfangs nur ein Fall für die Statistik
Im JahrDie Dauer eines Umlaufs der Erde um die Sonne. Im bürgerlichen Sprachgebrauch der Zeitabschnitt, der in ganzen Tagen etwa einem Umlauf um die Sonne entspricht, also 365 Tage (366 Tage in einem Schaltjahr). Je nach Bezugspunkt am Himmel ergeben sich verschiedene Jahreslängen: Siderisches Jahr (Sternjahr): Das Zeitintervall, nach dem die mittlere Sonne bezüglich der Sterne wieder dieselbe Position am Himmel erreicht hat: 365,2563604167 Tage (365d 06h 09min 09,54sec). In diesem Zeitraum bewegt sich die Sonne um 360° relativ zu den Sternen. Tropisches Jahr (Sonnenjahr): Das Zeitintervall zwischen aufeinanderfolgenden Durchgängen der mittleren Sonne durch den Frühlingspunkt: 365,24219052 Tage (365d 05h 48min 45,261sec). Wegen der Präzession der Erdachse, die den Frühlingspunkt verschiebt, ist das tropische Jahr rund 20 Minuten kürzer als das siderische. In diesem Zeitraum bewegt sich die Sonne um 360° − 50,26″ relativ zu den Sternen. Da die mittlere ekliptikale Länge der Sonne auf den Frühlingspunkt bezogen wird, ist ein tropisches Jahr der Zeitraum, in dem die mittlere ekliptikale Länge der Sonne um 360° zunimmt. Anomalistisches Jahr: Das Zeitintervall zwischen aufeinanderfolgenden Durchgängen der Erde durch ihr Perihel: 365,259635864 Tage (365d 06h 13min 52,539sec). Wegen der Bahnstörungen durch die anderen Planeten, die das Perihel pro Jahr um 11,6 Bogensekunden verschieben, ist das anomalistische Jahr um knapp fünf Minuten länger als das siderische. In diesem Zeitraum bewegt sich die Sonne um 360° + 11,6″ relativ zu den Sternen. Kalenderjahr (bürgerliches Jahr): Die mittlere Länge des Jahres nach dem Gregorianischen Kalender: 365,2425 Tage (365d 05h 49min 12sec). Um in ganzen Tagen rechnen zu können, umfasst ein gewöhnliches Kalenderjahr 365 Tage, wobei nach einer Schaltregel gelegentlich ein weiterer Tag eingefügt wird, um das Kalenderjahr an das tropische Jahr anpassen zu können. 1929 veröffentlichte der Astronom Cuno Hoffmeister in „Fortsetzung der Arbeiten zur Statistik der veränderlichen Sterne“ eine Liste mit 354 neuen Veränderlichen, die er fotografisch an der Sternwarte Sonneberg entdeckt hatte. Darunter befand sich ein sternförmiges Objekt im Sternbild Eidechse (Lacerta), dessen scheinbare HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit).Die HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit)., mit der ein HimmelskörperAllgemeiner Begriff für alle materiellen Objekte im Weltraum, wie zum Beispiel Sterne, Planeten, Kometen und Asteroiden. dem Beobachter erscheint, also ein Maß für die empfangene Strahlung des Himmelsobjekts. Die heute übliche logarithmische Skala für die scheinbare HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). basiert auf den bereits seit der Antike gebräuchlichen Größenklassen, nach denen der hellste Stern 0. Größe, die mit Augen gerade noch erkennbaren Sterne 6. Größe haben. Heute ist die Einheit MagnitudeEinheit für die scheinbare oder absolute HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). eines Gestirns. (Einheitenzeichen mag oder ein hochgestelltes m). Die historischen Begriffe „Größe“ für die HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). eines Sterns und „GrößenklasseEinheit für die scheinbare Helligkeit eines Gestirns. Da der historische Begriff „Größe“ für die Helligkeit eines Sterns nichts mit dessen physikalischer Größe zu tun hat, wird die Größenklasse heutzutage meistens mit Magnitude (Einheitenzeichen mag oder ein hochgestelltes m) bezeichnet. Auch der Begriff Helligkeitsklasse wird verwendet.“ für die Einheit der HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). werden nur noch selten benutzt, da sie nichts mit der physikalischen Größe eines Sterns zu tun haben., abgekürzt mag, üblich. Der Intensitätsunterschied zweier Sterne, die sich um genau 1 mag unterscheiden, beträgt einen Faktor 2,512. Ein Unterschied von 5 mag entspricht genau einem Intensitätsunterschied von 100. Objekte, die heller als 0 mag sind, haben negative Magnituden. So erreicht die Venus im größten Glanz −4,4 mag. zwischen 13 und 15 mag zu variieren schien. Hoffmeister klassifizierte es als kurzperiodischen Veränderlichen. Gemäß der Regeln für die Benennung veränderlicher Sterne erhielt das Objekt später die Bezeichnung BL Lacertae oder kurz BL Lac.
Lange Zeit hielten die Astronomen BL Lac also für einen veränderlichen SternEin aus Gasen bestehender HimmelskörperAllgemeiner Begriff für alle materiellen Objekte im Weltraum, wie zum Beispiel Sterne, Planeten, Kometen und Asteroiden., der selbst leuchtet. Während der meisten Zeit ihres Dasein werden Sterne durch zwei widerstreitende Kräfte im Gleichgewicht gehalten: durch die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit., die den Stern zusammenzudrücken sucht, und durch den Strahlungsdruck, der durch Kernfusionsprozesse im Inneren entsteht und die Gaskugel auseinanderzutreiben versucht. Unterschiede zwischen den Sternen und ihren Entwicklungswegen kommen im Wesentlichen durch ihre unterschiedliche MasseDie Menge Materie, die ein Körper enthält. Sie ist eine grundlegende Eigenschaft der Materie und die Ursache der Anziehung von Materie über die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit.. zustande. innerhalb unseres Milchstraßensystems, und sie widmeten ihm wenig Aufmerksamkeit. Das änderte sich Ende der 1960er Jahre, nachdem immer bessere Radioteleskope auch den Radiowellenbereich des elektromagnetischen Spektrums für die Astronomie zugänglich gemacht hatten und ein seltsames Verhalten von BL Lac registrierten.
Identifikation mit einer Radioquelle
Eines der großen Radioteleskope, die in der Pionierzeit der RadioastronomieTeilgebiet der Astronomie, das die HimmelskörperAllgemeiner Begriff für alle materiellen Objekte im Weltraum, wie zum Beispiel Sterne, Planeten, Kometen und Asteroiden. und kosmischen Quellen anhand der von ihnen ausgesandten Radiostrahlung erforscht. aufgebaut wurden, befand sich am Vermilion River Observatory der University of Illinois in den USA. Der ReflektorAndere Bezeichnung für ein Spiegelteleskop, bei dem das LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. durch Reflexion an einem gekrümmten Spiegel gesammelt wird. bestand aus einer 180 Meter langen Rinne mit parabolischem Querschnitt, die in eine natürliche Senke eingelassen worden war. Mit Hilfe der Erddrehung tastete dieses Teleskop seit 1959 den Himmel im Radiobereich ab. Eine der mit dieser Anlage entdeckten Radioquellen erhielt nach ihrer ungefähren Himmelsposition die Katalogbezeichnung VRO 42.22.01 (wobei die 42 für den Deklinationsbereich 42° bis 43° steht, die 22 für den Rektaszensionsbereich 22h bis 23h, und die 01 für die erste in diesem Himmelsareal entdeckte Quelle).
Die Radioquelle VRO 42.22.01 verhielt sich sehr merkwürdig: Ihre spektrale Energieverteilung stieg im Bereich der Meter- und Zentimeterwellen mit abnehmender WellenlängeDer Abstand zweier phasengleicher Punkte einer schwingenden Welle. Mit der FrequenzDie Anzahl der Schwingungen pro Zeiteinheit. Einheit ist das Hertz (1 Hz = 1 Schwingung pro Sekunde). Formelzeichen: ν. Für elektromagnetische WellenStrahlung aus magnetischen und elektrischen Feldern, die sich wellenförmig ausbreitet. gilt: ν = λ/c, wobei λ die Wellenlänge und c die Lichtgeschwindigkeit ist. ν einer elektromagnetischen Welle ist deren Wellenlänge λ über die Beziehung c = λ · ν verknüpft, wobei c die LichtgeschwindigkeitDie Ausbreitungsgeschwindigkeit elektromagnetischer Strahlung im Vakuum, eine der wichtigsten Naturkonstanten. Per Definition gilt: Lichtgeschwindigkeit c = 299 792 458 Meter pro Sekunde. In lichtdurchlässigen Materialien ist die Ausbreitungsgeschwindigkeit cn wegen des Brechungsindex n kleiner: cn = c/n. Die Lichtgeschwindigkeit ist die höchste Geschwindigkeit, mit der sich ein Signal ausbreiten kann. ist. steil an und zeigte ein Doppelmaximum, was darauf hindeutete, dass die Quelle aus zwei Komponenten besteht. Zudem wurden während der mehrjährigen Messkampagne immer wieder Intensitätsschwankungen bis zu 50 Prozent und mehr beobachtet, die innerhalb von Wochen oder sogar von Tagen erfolgten. Die RadiostrahlungElektromagnetische Strahlung im Wellenlängenbereich der Kurz-, Ultrakurz- und Mikrowellen. Von kosmischen Quellen ausgesandte Radiostrahlung dringt nur in gewissen Beobachtungsfenstern durch die AtmosphäreIm engeren Sinn die einen Planeten umgebende Gashülle, im weiteren Sinn auch die Gashülle über der dünnen Schicht eines Sterns, aus der das sichtbare Licht stammt. der Erde. erwies sich zudem als teilweise linear polarisiert. Dies alles deutete auf eine nicht-thermische, also nicht-stellare Quelle hin, die in ihrer Charakteristik eher einer kompakten GalaxieEigenständiges Sternsystem. Unsere eigene Heimatgalaxie heißt Galaxis oder Milchstraßensystem und ist mit rund 400 Milliarden Sternen eine mittelgroße Galaxie. Vermutlich gibt es im Universum mehrere hundert Milliarden Galaxien unterschiedlicher Größe. Ihre Formen sind sehr vielfältig; die beiden Haupttypen sind elliptisch und spiralförmig. oder einer der quasistellaren Quellen ähnelte, von denen seit Ende der 1950er Jahre mehrere durch Radiobeobachtungen entdeckt worden waren.
Ein entscheidender Fortschritt wurde erzielt, als es den beiden Radioastronomen John M. MacLeod und Bryan H. Andrew vom Algonquin Radio Observatory in Kanada 1968 gelang, die Position von VRO 42.22.01 präzise zu bestimmen und diese Radioquelle mit dem im Optischen sichtbaren „SternEin aus Gasen bestehender HimmelskörperAllgemeiner Begriff für alle materiellen Objekte im Weltraum, wie zum Beispiel Sterne, Planeten, Kometen und Asteroiden., der selbst leuchtet. Während der meisten Zeit ihres Dasein werden Sterne durch zwei widerstreitende Kräfte im Gleichgewicht gehalten: durch die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit., die den Stern zusammenzudrücken sucht, und durch den Strahlungsdruck, der durch Kernfusionsprozesse im Inneren entsteht und die Gaskugel auseinanderzutreiben versucht. Unterschiede zwischen den Sternen und ihren Entwicklungswegen kommen im Wesentlichen durch ihre unterschiedliche MasseDie Menge Materie, die ein Körper enthält. Sie ist eine grundlegende Eigenschaft der Materie und die Ursache der Anziehung von Materie über die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit.. zustande.“ BL Lac zu identifizieren.

Auch wenn BL Lac kein veränderlicher Stern ist, sondern ein Blazar, wird seine Helligkeit von Veränderlichenbeobachtern regelmäßig gemessen. Denn Amateurastronomen tragen auf diese Weise wertvolle Beobachtungsdaten für die Erforschung solcher Objekte zusammen. Die Umgebungskarte der AAVSO markiert die Position des Blazars BL Lac in der Bildmitte mit einem Fadenkreuz. Das Gesichtsfeld der Karte beträgt 1°. Der mit „85“ markierte Stern oberhalb von BL Lac ist HD 209438 (HIP 108795) mit einer scheinbaren Helligkeit von 8,5 mag. In der Karte ist Norden oben und Osten links. (Bild: AAVSO)
Name | BL Lacertae |
---|---|
andere Bezeichnungen: |
BL Lac, VRO 42.22.01, QSO B2200+420 |
Objekttyp: |
BL-Lac-Objekt, Blazar. Quasar, AGN |
Sternbild: |
Eidechse |
Position (J2000.0): |
α = 22h 02m 43,3s, δ = +42° 16′ 40,0″ |
scheinbare Helligkeit: |
12–17 mag, veränderlich |
Entfernung: |
276 Mpc = 900 Millionen Lj |