Schau vorbei!
spacecrumb GmbH
Robert-Bosch-Straße 7
64293 Darmstadt
Kontakt

Was können wir
für Sie tun?

Kontakt

Dieses Feld dient zur Validierung und sollte nicht verändert werden.
Newsletter

Nichts mehr verpassen!

Der spacecrumb Newsletter informiert Dich kostenlos über die wichtigsten Meldungen aus dem All.

Newsletter

Dieses Feld dient zur Validierung und sollte nicht verändert werden.
Veränderliche Sterne

Im Sternbild Nördliche Krone finden wir mehrere veränderliche Sterne,
die unterschiedlicher nicht sein könnten:

  • R CrB ist der Prototyp einer seltenen Klasse von Veränderlichen: Sterne, die Rußwolken ausspucken und dadurch „negative“ Ausbrüche erleiden
  • S CrB ist ein Mirastern, also ein langperiodischer Pulsationsveränderlicher
  • T CrB ist eine wiederkehrende Nova, die in wenigen Jahren (oder Monaten?) erneut ausbrechen dürfte

R Coronae Borealis: Ein rußender Stern

R Coronae Borealis im Sternbild Nördliche Krone ist der Prototyp einer speziellen Klasse von veränderlichen Sternen mit sehr ungewöhnlichen Eigenschaften. Sterne dieses Typs, von dem nur etwa 150 Exemplare in der GalaxisAus dem Griechischen entlehnter Name für unsere eigene GalaxieEigenständiges Sternsystem. Unsere eigene Heimatgalaxie heißt Galaxis oder Milchstraßensystem und ist mit rund 400 Milliarden Sternen eine mittelgroße Galaxie. Vermutlich gibt es im Universum mehrere hundert Milliarden Galaxien unterschiedlicher Größe. Ihre Formen sind sehr vielfältig; die beiden Haupttypen sind elliptisch und spiralförmig., das Milchstraßensystem. bekannt sind, verweilen die meiste Zeit im Maximum ihrer HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit).. Doch unvermittelt sinkt ihre HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). steil um zwei bis acht Magnituden ab, schwankt in zufälliger Weise und kehrt erst nach Wochen, Monaten oder sogar Jahren wieder zum ursprünglichen Wert zurück.

Aufgrund dieses Verhaltens hat man R-Coronae-Borealis-Sterne etwas ironisch, aber treffend, als „eruptive VeränderlicheOberbegriff für verschiedene Gruppen von veränderlichen Sternen, die ihre Helligkeit aufgrund von Eruptionen ändern, die zu mehr oder weniger starken Lichtausbrüchen führen. Die Eruptionen können dabei verschiedene physische Ursachen haben und einmalig oder wiederholt auftreten. In extremen Fällen kann sich die Leuchtkraft zeitweise um viele Größenordnungen steigern. Beispiele sind Flaresterne, kataklysmische VeränderlicheSehr enge Doppelsternsysteme, deren Strahlungsausbrüche auf einer Wechselwirkung zwischen den beiden Komponenten beruhen. Einer der beiden Partner ist ein weit entwickelter Stern, der sich aufbläht, der andere ein kompaktes Objekt wie ein Weißer Zwerg, ein Neutronenstern oder ein Schwarzes Loch. In dieser Konstellation strömt Materie aus der Hülle des sich aufblähenden Sterns zum Partner über, wo sie sich zunächst in einer AkkretionsscheibeEine scheibenförmige Materieansammlung, die sich durch Zuströmen von mit Drehimpuls ausgestatteter Materie um einen massereichen Himmelskörper ausbildet. Infolge der Drehimpulserhaltung kann Materie nicht in radialer Richtung auf einen anziehenden Körper fallen, sondern sie nähert sich ihm auf spiralförmiger Bahn, wobei die Umlaufgeschwindigkeit mit kleiner werdendem Abstand anwächst, bis schließlich ein Gleichgewicht zwischen Anziehungs- und Zentrifugalkraft erreicht ist. Durch Reibung in der entstehenden dicken Scheibe heizt sich die Materie auf, wodurch diese Wärmestrahlung aussendet. In dem gesamten Prozess wandelt sich letztlich Gravitationsenergie sehr effizient in Wärmestrahlung um. Innerhalb der Scheibe überträgt die weiter innen umlaufende Materie durch Reibung Drehimpuls auf die weiter außen umlaufende Materie, wodurch von der Innenseite der Scheibe langsam Materie auf den Zentralkörper fallen kann. Auch magnetische Effekte spielen bei der Energie- und Drehimpulsübertragung eine Rolle. ansammelt, bei Vorliegen eines starken Magnetfeldes aber auch direkt auf die Oberfläche des Partners trifft. Es gibt in einem solchen System im Allgemeinen fünf Lichtquellen: die beiden Sterne, der Gasstrom, die AkkretionsscheibeEine scheibenförmige Materieansammlung, die sich durch Zuströmen von mit Drehimpuls ausgestatteter Materie um einen massereichen Himmelskörper ausbildet. Infolge der Drehimpulserhaltung kann Materie nicht in radialer Richtung auf einen anziehenden Körper fallen, sondern sie nähert sich ihm auf spiralförmiger Bahn, wobei die Umlaufgeschwindigkeit mit kleiner werdendem Abstand anwächst, bis schließlich ein Gleichgewicht zwischen Anziehungs- und Zentrifugalkraft erreicht ist. Durch Reibung in der entstehenden dicken Scheibe heizt sich die Materie auf, wodurch diese Wärmestrahlung aussendet. In dem gesamten Prozess wandelt sich letztlich Gravitationsenergie sehr effizient in Wärmestrahlung um. Innerhalb der Scheibe überträgt die weiter innen umlaufende Materie durch Reibung Drehimpuls auf die weiter außen umlaufende Materie, wodurch von der Innenseite der Scheibe langsam Materie auf den Zentralkörper fallen kann. Auch magnetische Effekte spielen bei der Energie- und Drehimpulsübertragung eine Rolle. sowie der Auftreffpunkt des Gasstroms, heißer Fleck genannt. Durch Veränderungen im Gasstrom und Instabilitäten in der AkkretionsscheibeEine scheibenförmige Materieansammlung, die sich durch Zuströmen von mit Drehimpuls ausgestatteter Materie um einen massereichen Himmelskörper ausbildet. Infolge der Drehimpulserhaltung kann Materie nicht in radialer Richtung auf einen anziehenden Körper fallen, sondern sie nähert sich ihm auf spiralförmiger Bahn, wobei die Umlaufgeschwindigkeit mit kleiner werdendem Abstand anwächst, bis schließlich ein Gleichgewicht zwischen Anziehungs- und Zentrifugalkraft erreicht ist. Durch Reibung in der entstehenden dicken Scheibe heizt sich die Materie auf, wodurch diese Wärmestrahlung aussendet. In dem gesamten Prozess wandelt sich letztlich Gravitationsenergie sehr effizient in Wärmestrahlung um. Innerhalb der Scheibe überträgt die weiter innen umlaufende Materie durch Reibung Drehimpuls auf die weiter außen umlaufende Materie, wodurch von der Innenseite der Scheibe langsam Materie auf den Zentralkörper fallen kann. Auch magnetische Effekte spielen bei der Energie- und Drehimpulsübertragung eine Rolle. schwankt die Helligkeit des Systems auch in ruhigen Phasen. Bei Überschreiten bestimmter Kriterien können im heißen Fleck explosionsartig Kernfusionsreaktionen einsetzen, die die Helligkeit um mehrere Größenordnungen ansteigen lassen. Zu den kataklysmischen Veränderlichen zählen z.B. Novae, Zwergnovae und rekurrierende Novae, deren Lichtausbrüche sich in bestimmten Zeitabständen wiederholen können. (enge Doppelsterne mit Massenübertragung), Novae und Supernovae. mit negativen Ausbrüchen“ bezeichnet.

Wir finden den Veränderlichen R CrB leicht, und zwar innerhalb der auffälligen halbkreisförmigen Sternenstruktur der Nördlichen Krone, etwas links von der Mitte. Solange seine HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). nahe des Maximums von etwa 6 mag liegt, ist er dort einfach mit dem Fernglas aufzuspüren, denn dann ist er innerhalb des Halbkreises der hellste SternEin aus Gasen bestehender HimmelskörperAllgemeiner Begriff für alle materiellen Objekte im Weltraum, wie zum Beispiel Sterne, Planeten, Kometen und Asteroiden., der selbst leuchtet. Während der meisten Zeit ihres Dasein werden Sterne durch zwei widerstreitende Kräfte im Gleichgewicht gehalten: durch die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit., die den Stern zusammenzudrücken sucht, und durch den Strahlungsdruck, der durch Kernfusionsprozesse im Inneren entsteht und die Gaskugel auseinanderzutreiben versucht. Unterschiede zwischen den Sternen und ihren Entwicklungswegen kommen im Wesentlichen durch ihre unterschiedliche MasseDie Menge Materie, die ein Körper enthält. Sie ist eine grundlegende Eigenschaft der Materie und die Ursache der Anziehung von Materie über die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit.. zustande.. In der Minimumphase allerdings bleibt er im Fernglas unsichtbar.

Der englische Astronom Edward Pigott (1753 – 1825) hatte die Veränderlichkeit von R CrB im JahrDie Dauer eines Umlaufs der Erde um die Sonne. Im bürgerlichen Sprachgebrauch der Zeitabschnitt, der in ganzen Tagen etwa einem Umlauf um die Sonne entspricht, also 365 Tage (366 Tage in einem Schaltjahr). Je nach Bezugspunkt am Himmel ergeben sich verschiedene Jahreslängen: Siderisches Jahr (Sternjahr): Das Zeitintervall, nach dem die mittlere Sonne bezüglich der Sterne wieder dieselbe Position am Himmel erreicht hat: 365,2563604167 Tage (365d 06h 09min 09,54sec). In diesem Zeitraum bewegt sich die Sonne um 360° relativ zu den Sternen. Tropisches Jahr (Sonnenjahr): Das Zeitintervall zwischen aufeinanderfolgenden Durchgängen der mittleren Sonne durch den Frühlingspunkt: 365,24219052 Tage (365d 05h 48min 45,261sec). Wegen der Präzession der Erdachse, die den Frühlingspunkt verschiebt, ist das tropische Jahr rund 20 Minuten kürzer als das siderische. In diesem Zeitraum bewegt sich die Sonne um 360° − 50,26″ relativ zu den Sternen. Da die mittlere ekliptikale Länge der Sonne auf den Frühlingspunkt bezogen wird, ist ein tropisches Jahr der Zeitraum, in dem die mittlere ekliptikale Länge der Sonne um 360° zunimmt. Anomalistisches Jahr: Das Zeitintervall zwischen aufeinanderfolgenden Durchgängen der Erde durch ihr Perihel: 365,259635864 Tage (365d 06h 13min 52,539sec). Wegen der Bahnstörungen durch die anderen Planeten, die das Perihel pro Jahr um 11,6 Bogensekunden verschieben, ist das anomalistische Jahr um knapp fünf Minuten länger als das siderische. In diesem Zeitraum bewegt sich die Sonne um 360° + 11,6″ relativ zu den Sternen. Kalenderjahr (bürgerliches Jahr): Die mittlere Länge des Jahres nach dem Gregorianischen Kalender: 365,2425 Tage (365d 05h 49min 12sec). Um in ganzen Tagen rechnen zu können, umfasst ein gewöhnliches Kalenderjahr 365 Tage, wobei nach einer Schaltregel gelegentlich ein weiterer Tag eingefügt wird, um das Kalenderjahr an das tropische Jahr anpassen zu können. 1795 bemerkt. Damit gehört R CrB zu den am längsten bekannten und beobachteten veränderlichen Sternen. Die Ursache seines Lichtwechsels blieb freilich rund 200 Jahre lang ein Rätsel.

 

corona borealis veraenderliche

Die Positionen der veränderlichen Sterne R, S und T Coronae Borealis im Sternbild Nördliche Krone sind im Bild durch Kreise markiert. (Bild: Uwe Reichert)

Negative Ausbrüche in der Lichtkurve von R CrB

Die scheinbare HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit).Die HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit)., mit der ein HimmelskörperAllgemeiner Begriff für alle materiellen Objekte im Weltraum, wie zum Beispiel Sterne, Planeten, Kometen und Asteroiden. dem Beobachter erscheint, also ein Maß für die empfangene Strahlung des Himmelsobjekts. Die heute übliche logarithmische Skala für die scheinbare HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). basiert auf den bereits seit der Antike gebräuchlichen Größenklassen, nach denen der hellste Stern 0. Größe, die mit Augen gerade noch erkennbaren Sterne 6. Größe haben. Heute ist die Einheit MagnitudeEinheit für die scheinbare oder absolute HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). eines Gestirns. (Einheitenzeichen mag oder ein hochgestelltes m). Die historischen Begriffe „Größe“ für die HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). eines Sterns und „GrößenklasseEinheit für die scheinbare Helligkeit eines Gestirns. Da der historische Begriff „Größe“ für die Helligkeit eines Sterns nichts mit dessen physikalischer Größe zu tun hat, wird die Größenklasse heutzutage meistens mit Magnitude (Einheitenzeichen mag oder ein hochgestelltes m) bezeichnet. Auch der Begriff Helligkeitsklasse wird verwendet.“ für die Einheit der HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). werden nur noch selten benutzt, da sie nichts mit der physikalischen Größe eines Sterns zu tun haben., abgekürzt mag, üblich. Der Intensitätsunterschied zweier Sterne, die sich um genau 1 mag unterscheiden, beträgt einen Faktor 2,512. Ein Unterschied von 5 mag entspricht genau einem Intensitätsunterschied von 100. Objekte, die heller als 0 mag sind, haben negative Magnituden. So erreicht die Venus im größten Glanz −4,4 mag. von R CrB schwankt normalerweise nur leicht zwischen 5,8 und 6 mag. Dieser Teil seiner Variabiliät ist auf Pulsationen des Sterns zurückzuführen, der sich in einer späten Entwicklungsphase befindet. Es scheinen sich sogar zwei Pulsationen zu überlagern, mit Perioden von 40 und 51 Tagen.

Viel spektakulärer ist jedoch ein anderes Verhalten: In unregelmäßigen Abständen bricht seine HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). innerhalb weniger Tage stark ein. So etwa im Februar 2003, als sie binnen drei Wochen auf 13 mag abstürzte. Es war, als hätte jemand den SternEin aus Gasen bestehender HimmelskörperAllgemeiner Begriff für alle materiellen Objekte im Weltraum, wie zum Beispiel Sterne, Planeten, Kometen und Asteroiden., der selbst leuchtet. Während der meisten Zeit ihres Dasein werden Sterne durch zwei widerstreitende Kräfte im Gleichgewicht gehalten: durch die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit., die den Stern zusammenzudrücken sucht, und durch den Strahlungsdruck, der durch Kernfusionsprozesse im Inneren entsteht und die Gaskugel auseinanderzutreiben versucht. Unterschiede zwischen den Sternen und ihren Entwicklungswegen kommen im Wesentlichen durch ihre unterschiedliche MasseDie Menge Materie, die ein Körper enthält. Sie ist eine grundlegende Eigenschaft der Materie und die Ursache der Anziehung von Materie über die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit.. zustande. gedimmt und seine HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). auf ein Fünfhundertstel heruntergeregelt: Nur noch 0,2 Prozent des ursprünglichen Lichtstroms erreichte uns. Danach schwankte die HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). zunächst ohne erkennbare Regelmäßigkeit und stieg ab Mitte März langsam wieder an. Zu ihrem Normalwert kehrte sie erst Anfang Mai 2003 zurück.

Der nächste Einbruch erfolgte 2007, verlief noch stärker und hielt ungewöhnlich lange an: Erst im JahrDie Dauer eines Umlaufs der Erde um die Sonne. Im bürgerlichen Sprachgebrauch der Zeitabschnitt, der in ganzen Tagen etwa einem Umlauf um die Sonne entspricht, also 365 Tage (366 Tage in einem Schaltjahr). Je nach Bezugspunkt am Himmel ergeben sich verschiedene Jahreslängen: Siderisches Jahr (Sternjahr): Das Zeitintervall, nach dem die mittlere Sonne bezüglich der Sterne wieder dieselbe Position am Himmel erreicht hat: 365,2563604167 Tage (365d 06h 09min 09,54sec). In diesem Zeitraum bewegt sich die Sonne um 360° relativ zu den Sternen. Tropisches Jahr (Sonnenjahr): Das Zeitintervall zwischen aufeinanderfolgenden Durchgängen der mittleren Sonne durch den Frühlingspunkt: 365,24219052 Tage (365d 05h 48min 45,261sec). Wegen der Präzession der Erdachse, die den Frühlingspunkt verschiebt, ist das tropische Jahr rund 20 Minuten kürzer als das siderische. In diesem Zeitraum bewegt sich die Sonne um 360° − 50,26″ relativ zu den Sternen. Da die mittlere ekliptikale Länge der Sonne auf den Frühlingspunkt bezogen wird, ist ein tropisches Jahr der Zeitraum, in dem die mittlere ekliptikale Länge der Sonne um 360° zunimmt. Anomalistisches Jahr: Das Zeitintervall zwischen aufeinanderfolgenden Durchgängen der Erde durch ihr Perihel: 365,259635864 Tage (365d 06h 13min 52,539sec). Wegen der Bahnstörungen durch die anderen Planeten, die das Perihel pro Jahr um 11,6 Bogensekunden verschieben, ist das anomalistische Jahr um knapp fünf Minuten länger als das siderische. In diesem Zeitraum bewegt sich die Sonne um 360° + 11,6″ relativ zu den Sternen. Kalenderjahr (bürgerliches Jahr): Die mittlere Länge des Jahres nach dem Gregorianischen Kalender: 365,2425 Tage (365d 05h 49min 12sec). Um in ganzen Tagen rechnen zu können, umfasst ein gewöhnliches Kalenderjahr 365 Tage, wobei nach einer Schaltregel gelegentlich ein weiterer Tag eingefügt wird, um das Kalenderjahr an das tropische Jahr anpassen zu können. 2019 erreichte R CrB wieder eine HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). von 6 mag, nachdem sie heftig zwischen 15 und 7 mag geschwankt hatte. Ein weiterer Helligkeitsabfall war Ende 2019 zu verzeichnen, diesmal allerdings nur auf 9 mag.

lichtkurve r crb 2003

Die Lichtkurve von R Coronae Borealis mit den Daten aus dem ersten Halbjahr 2003 zeigt einen typischen Helligkeitseinbruch des Sterns. Innerhalb nur weniger Tage sackte die Helligkeit um mehrere Magnituden ab und stieg nach dem Durchlaufen eines Minimums, in dem der Stern wild flackerte, mit langsamerer Geschwindigkeit wieder an. (Bild: AAVSO)

Hobbyastronomen dokumentieren Lichtkurve

Weder der Zeitpunkt dieser Helligkeitseinbrüche noch die Tiefe der Minima und die Verweildauer darin lassen sich vorhersagen. Deshalb ist die lückenlose Dokumentation der LichtkurveGrafische Darstellung des Helligkeitsverlaufs eines Himmelsobjekts mit veränderlicher HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). (zum Beispiel eines veränderlichen Sterns oder eines Kometen). durch Amateurastronomen extrem wichtig für die wissenschaftliche Erforschung dieses Veränderlichentyps. International sind diese Veränderlichenbeobachter in der American Association of Variable Star Observers (AAVSO) organisiert. Für den deutschen Sprachraum gibt es die Bundesdeutsche Arbeitsgemeinschaft für veränderliche SterneSterne, deren scheinbare Helligkeit nicht konstant ist, sondern zeitlich schwankt. Bei Bedeckungsveränderlichen ist die Ursache nicht physischer, sondern rein geometrischer Natur: Es sind Doppelsterne, die sich vom irdischen Beobachter aus betrachtet im Rhythmus ihres gegenseitigen Umlaufs bedecken. Die größte Klasse der physisch Veränderlichen sind die Pulsationsveränderlichen, die sich in einem späten Stadium der Sternentwicklung befinden. Ihre äußeren Schichten blähen sich mehr oder weniger periodisch auf und ziehen sich wieder zusammen, wobei sich auch die Oberflächentemperatur und die Leuchtkraft ändern. Je nach Periodenlänge und Form der Lichtkurve werden mehrere Untergruppen unterschieden, z.B. RR-Lyrae-Sterne, CepheidenOberbegriff für verschiedene Klassen von veränderlichen Sternen, die ihre Helligkeit aufgrund von Pulsationen ändern (Pulsationsveränderliche). Die klassischen Cepheiden, auch Delta-Cephei-Sterne genannt, haben regelmäßige Perioden (wenige Tage bis einige Wochen), die eng mit ihrer mittleren Leuchtkraft verknüpft sind: Je länger die Periode, desto höher die Leuchtkraft. Mit dieser Perioden-Leuchtkraft-Beziehung lässt sich aus der gemessenen Periode des Sterns und seiner mittleren scheinbaren Helligkeit seine Leuchtkraft und somit seine Entfernung ermitteln. Da Delta-Cephei-Sterne sehr hell leuchten und sich auch in Nachbargalaxien nachweisen lassen, sind sie ein wichtiger Indikator für die Entfernungsmessung. und Mirasterne. Das Verhalten von unregelmäßig oder eruptiv veränderlichen Sternen ist nicht vorherzusagen. Hierzu gehören z.B. die zu den Zwergnovae gezählten U-Geminorum-Sterne. R-Coronae-Borealis-Sterne wiederum sind Sterne, die gelegentlich Wolken von Kohlenstoff ausstoßen und deshalb ihre Helligkeit in nicht vorhersagbarer Weise reduzieren. e.V. (BAV).

Diese Organisationen bieten auch Umgebungskarten der veränderlichen Sterne an, in denen die Helligkeiten von geeigneten Vergleichssternen angegeben sind und die sich individuell konfigurieren lassen. Beispiel: Umgebungskarte von R CrB der AAVSO. Anhand solcher Karten können visuelle Beobachter die aktuelle HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). eines Veränderlichen schätzen. Mit ein bisschen Übung gelingt das auf 0,1 mag genau.

 

Der astrophysikalische Befund

Während Amateurastronomen seit Langem die LichtkurveGrafische Darstellung des Helligkeitsverlaufs eines Himmelsobjekts mit veränderlicher HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). (zum Beispiel eines veränderlichen Sterns oder eines Kometen). lückenlos registrieren, klärten Wissenschaftler mit spektroskopischen Untersuchungen mit Großteleskopen nach und nach die physikalische Natur des Sterns und die Ursache seines merkwürdigen Verhaltens auf.

Wie sich zeigte, ist R CrB ein alter, weit entwickelter SternEin aus Gasen bestehender HimmelskörperAllgemeiner Begriff für alle materiellen Objekte im Weltraum, wie zum Beispiel Sterne, Planeten, Kometen und Asteroiden., der selbst leuchtet. Während der meisten Zeit ihres Dasein werden Sterne durch zwei widerstreitende Kräfte im Gleichgewicht gehalten: durch die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit., die den Stern zusammenzudrücken sucht, und durch den Strahlungsdruck, der durch Kernfusionsprozesse im Inneren entsteht und die Gaskugel auseinanderzutreiben versucht. Unterschiede zwischen den Sternen und ihren Entwicklungswegen kommen im Wesentlichen durch ihre unterschiedliche MasseDie Menge Materie, die ein Körper enthält. Sie ist eine grundlegende Eigenschaft der Materie und die Ursache der Anziehung von Materie über die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit.. zustande., der als Überriese vieltausendfach heller leuchtet als unsere SonneDer Zentralkörper unseres Sonnensystems, ein Hauptreihenstern der Spektralklasse G2V. Die MasseDie Menge Materie, die ein Körper enthält. Sie ist eine grundlegende Eigenschaft der Materie und die Ursache der Anziehung von Materie über die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit.. der Sonne beträgt rund 2 · 1030 kg, ihr Radius 700 000 km, ihre Oberflächentemperatur 5778 Kelvin und ihre LeuchtkraftDie pro Sekunde von einem Stern abgestrahlte EnergieEine fundamentale physikalische Größe, welche die Fähigkeit eines Systems beschreibt, Arbeit zu verrichten. Die Gesamtenergie eines abgeschlossenen Systems bleibt immer konstant (Energieerhaltungssatz), doch können einzelne Energieformen in andere umgewandelt werden., die von der Größe und der Temperatur der strahlenden Oberfläche abhängig ist. Ein Maß für die Leuchtkraft ist die absolute HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit).. 3,8 · 1026 W. MasseDie Menge Materie, die ein Körper enthält. Sie ist eine grundlegende Eigenschaft der Materie und die Ursache der Anziehung von Materie über die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit.. und LeuchtkraftDie pro Sekunde von einem Stern abgestrahlte EnergieEine fundamentale physikalische Größe, welche die Fähigkeit eines Systems beschreibt, Arbeit zu verrichten. Die Gesamtenergie eines abgeschlossenen Systems bleibt immer konstant (Energieerhaltungssatz), doch können einzelne Energieformen in andere umgewandelt werden., die von der Größe und der Temperatur der strahlenden Oberfläche abhängig ist. Ein Maß für die Leuchtkraft ist die absolute HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit).. der Sonne dienen als Referenzmaßstab für andere Sterne., obwohl er nur etwa 80 bis 90 Prozent ihrer MasseDie Menge Materie, die ein Körper enthält. Sie ist eine grundlegende Eigenschaft der Materie und die Ursache der Anziehung von Materie über die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit.. hat. Mit einer Oberflächentemperatur von etwa 6500 Kelvin ist eine solch enorme LeuchtkraftDie pro Sekunde von einem Stern abgestrahlte EnergieEine fundamentale physikalische Größe, welche die Fähigkeit eines Systems beschreibt, Arbeit zu verrichten. Die Gesamtenergie eines abgeschlossenen Systems bleibt immer konstant (Energieerhaltungssatz), doch können einzelne Energieformen in andere umgewandelt werden., die von der Größe und der Temperatur der strahlenden Oberfläche abhängig ist. Ein Maß für die Leuchtkraft ist die absolute HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit).. nur möglich, wenn die strahlende Oberfläche sehr groß ist. Das heißt, der SternEin aus Gasen bestehender HimmelskörperAllgemeiner Begriff für alle materiellen Objekte im Weltraum, wie zum Beispiel Sterne, Planeten, Kometen und Asteroiden., der selbst leuchtet. Während der meisten Zeit ihres Dasein werden Sterne durch zwei widerstreitende Kräfte im Gleichgewicht gehalten: durch die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit., die den Stern zusammenzudrücken sucht, und durch den Strahlungsdruck, der durch Kernfusionsprozesse im Inneren entsteht und die Gaskugel auseinanderzutreiben versucht. Unterschiede zwischen den Sternen und ihren Entwicklungswegen kommen im Wesentlichen durch ihre unterschiedliche MasseDie Menge Materie, die ein Körper enthält. Sie ist eine grundlegende Eigenschaft der Materie und die Ursache der Anziehung von Materie über die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit.. zustande. hat sich im Lauf seiner Entwicklung enorm aufgebläht.

Auffällig ist, dass die AtmosphäreIm engeren Sinn die einen Planeten umgebende Gashülle, im weiteren Sinn auch die Gashülle über der dünnen Schicht eines Sterns, aus der das sichtbare Licht stammt. von R CrB kaum Wasserstoff enthält und hauptsächlich aus Helium besteht. Zudem ist der Anteil an Kohlenstoff und anderen schweren Elementen außergewöhnlich hoch. Auch Lithium ist in der AtmosphäreIm engeren Sinn die einen Planeten umgebende Gashülle, im weiteren Sinn auch die Gashülle über der dünnen Schicht eines Sterns, aus der das sichtbare Licht stammt. enthalten; dieses Element kann nicht aus der Anfangszeit des Sterns stammen, sondern muss vor relativ kurzer Zeit entstanden sein.

Im infraroten Bereich strahlt der SternEin aus Gasen bestehender HimmelskörperAllgemeiner Begriff für alle materiellen Objekte im Weltraum, wie zum Beispiel Sterne, Planeten, Kometen und Asteroiden., der selbst leuchtet. Während der meisten Zeit ihres Dasein werden Sterne durch zwei widerstreitende Kräfte im Gleichgewicht gehalten: durch die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit., die den Stern zusammenzudrücken sucht, und durch den Strahlungsdruck, der durch Kernfusionsprozesse im Inneren entsteht und die Gaskugel auseinanderzutreiben versucht. Unterschiede zwischen den Sternen und ihren Entwicklungswegen kommen im Wesentlichen durch ihre unterschiedliche MasseDie Menge Materie, die ein Körper enthält. Sie ist eine grundlegende Eigenschaft der Materie und die Ursache der Anziehung von Materie über die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit.. zustande. sehr intensiv. Dieser Infrarotexzess weist auf eine heiße Staubhülle um den SternEin aus Gasen bestehender HimmelskörperAllgemeiner Begriff für alle materiellen Objekte im Weltraum, wie zum Beispiel Sterne, Planeten, Kometen und Asteroiden., der selbst leuchtet. Während der meisten Zeit ihres Dasein werden Sterne durch zwei widerstreitende Kräfte im Gleichgewicht gehalten: durch die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit., die den Stern zusammenzudrücken sucht, und durch den Strahlungsdruck, der durch Kernfusionsprozesse im Inneren entsteht und die Gaskugel auseinanderzutreiben versucht. Unterschiede zwischen den Sternen und ihren Entwicklungswegen kommen im Wesentlichen durch ihre unterschiedliche MasseDie Menge Materie, die ein Körper enthält. Sie ist eine grundlegende Eigenschaft der Materie und die Ursache der Anziehung von Materie über die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit.. zustande. hin, die Wärmestrahlung aussendet. Über die StrahlungDie Ausbreitung von EnergieEine fundamentale physikalische Größe, welche die Fähigkeit eines Systems beschreibt, Arbeit zu verrichten. Die Gesamtenergie eines abgeschlossenen Systems bleibt immer konstant (Energieerhaltungssatz), doch können einzelne Energieformen in andere umgewandelt werden. im Raum in Form von elektromagnetischen Wellen oder atomaren Teilchen. elektromagnetische WellenStrahlung aus magnetischen und elektrischen Feldern, die sich wellenförmig ausbreitet. breiten sich stets mit LichtgeschwindigkeitDie Ausbreitungsgeschwindigkeit elektromagnetischer Strahlung im Vakuum, eine der wichtigsten Naturkonstanten. Per Definition gilt: Lichtgeschwindigkeit c = 299 792 458 Meter pro Sekunde. In lichtdurchlässigen Materialien ist die Ausbreitungsgeschwindigkeit cn wegen des Brechungsindex n kleiner: cn = c/n. Die Lichtgeschwindigkeit ist die höchste Geschwindigkeit, mit der sich ein Signal ausbreiten kann. aus. Teilchenstrahlung kann sich unterhalb der LichtgeschwindigkeitDie Ausbreitungsgeschwindigkeit elektromagnetischer Strahlung im Vakuum, eine der wichtigsten Naturkonstanten. Per Definition gilt: Lichtgeschwindigkeit c = 299 792 458 Meter pro Sekunde. In lichtdurchlässigen Materialien ist die Ausbreitungsgeschwindigkeit cn wegen des Brechungsindex n kleiner: cn = c/n. Die Lichtgeschwindigkeit ist die höchste Geschwindigkeit, mit der sich ein Signal ausbreiten kann. mit sehr unterschiedlicher Geschwindigkeit ausbreiten, die von der kinetischen EnergieEine fundamentale physikalische Größe, welche die Fähigkeit eines Systems beschreibt, Arbeit zu verrichten. Die Gesamtenergie eines abgeschlossenen Systems bleibt immer konstant (Energieerhaltungssatz), doch können einzelne Energieformen in andere umgewandelt werden. der Partikel abhängt. Die Analyse der Strahlung kosmischer Objekte ist für Astronomen die wichtigste Methode, um Informationen über diese HimmelskörperAllgemeiner Begriff für alle materiellen Objekte im Weltraum, wie zum Beispiel Sterne, Planeten, Kometen und Asteroiden. zu bekommen. im fernen Infrarot wurde auch eine ausgedehnte kalte Staubhülle mit knotigen Verdichtungen nachgewiesen, die sich bis 13 Lichtjahre vom SternEin aus Gasen bestehender HimmelskörperAllgemeiner Begriff für alle materiellen Objekte im Weltraum, wie zum Beispiel Sterne, Planeten, Kometen und Asteroiden., der selbst leuchtet. Während der meisten Zeit ihres Dasein werden Sterne durch zwei widerstreitende Kräfte im Gleichgewicht gehalten: durch die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit., die den Stern zusammenzudrücken sucht, und durch den Strahlungsdruck, der durch Kernfusionsprozesse im Inneren entsteht und die Gaskugel auseinanderzutreiben versucht. Unterschiede zwischen den Sternen und ihren Entwicklungswegen kommen im Wesentlichen durch ihre unterschiedliche MasseDie Menge Materie, die ein Körper enthält. Sie ist eine grundlegende Eigenschaft der Materie und die Ursache der Anziehung von Materie über die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit.. zustande. erstreckt.

lichtkurve r crb 2000 2022

Die Langzeit-Lichtkurve des Veränderlichen R Coronae Borealis von Anfang 2000 bis Ende 2022. Eine Veränderung von 2,5 mag in der Magnitudenskala entspricht einem Faktor 10 in der Helligkeit. Da die vertikale Skala der Grafik 10 Magnituden überspannt, bedeutet dies einen Helligkeitsunterschied von einem Faktor 10 000. Jeder Messpunkt in der Lichtkurve entspricht einer visuellen Helligkeitsschätzung eines Amateurastronomen. Die breiten schwarzen Bereiche der Lichtkurve spiegeln sowohl die Messungenauigkeit der einzelnen visuellen Beobachtungen als auch die geringen Helligkeitsschwankungen des Sterns aufgrund von Pulsationen wider. (Bild: AAVSO)

Name R Coronae Borealis

andere Bezeichnungen:

R CrB, HD 141527, HIP 77442, HR 5880

Objekttyp:

Prototyp der R-CrB-Veränderlichen

Sternbild:

Nördliche Krone

Position (J2000.0):

α = 15h 48m 34,4s, δ = +28° 09′ 24,3″

scheinbare Helligkeit:

5,7 – 15,2 mag

Periode:

Spektralklasse:

G0Iep

Masse:

0,8 – 0,9 Sonnenmassen

Oberflächentemperatur:

6500 Kelvin

Entfernung:

ca. 700 pc = 2300 Lj (aus Parallaxe)
ca. 1400 pc = 4500 Lj (aus Leuchtkraft)

Ein Stern, der rußt wie eine flackernde Kerze

Die spektralen Indizien und das Verhalten der HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). lassen sich so interpretieren:

Wegen der großen Ausdehnung und der geringen Dichte des Sterns kann Material aus der äußeren Gashülle leicht von der Oberfläche entweichen. Gelegentlich stoßen Turbulenzen oder ein böiger Sternwind Gasschwaden in den umgebenden Weltraum. Dort kondensiert der im Gas enthaltene Kohlenstoff zu festen Partikeln, die als Rußwolken den SternEin aus Gasen bestehender HimmelskörperAllgemeiner Begriff für alle materiellen Objekte im Weltraum, wie zum Beispiel Sterne, Planeten, Kometen und Asteroiden., der selbst leuchtet. Während der meisten Zeit ihres Dasein werden Sterne durch zwei widerstreitende Kräfte im Gleichgewicht gehalten: durch die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit., die den Stern zusammenzudrücken sucht, und durch den Strahlungsdruck, der durch Kernfusionsprozesse im Inneren entsteht und die Gaskugel auseinanderzutreiben versucht. Unterschiede zwischen den Sternen und ihren Entwicklungswegen kommen im Wesentlichen durch ihre unterschiedliche MasseDie Menge Materie, die ein Körper enthält. Sie ist eine grundlegende Eigenschaft der Materie und die Ursache der Anziehung von Materie über die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit.. zustande. teilweise einhüllen und ihn verdunkeln.

Jedes Mal, wenn wir auf der Erde einen starken Einbruch seiner HelligkeitEin Maß für die Strahlung eines Himmelskörpers, ausgedrückt in Größenklassen oder der Einheit Magnitude. Unterschieden werden visuelle, scheinbare, absolute, fotografische und bolometrische Helligkeiten sowie Helligkeiten in einem bestimmten Wellenlängenbereich (z.B. Radiohelligkeit). registrieren, hat der SternEin aus Gasen bestehender HimmelskörperAllgemeiner Begriff für alle materiellen Objekte im Weltraum, wie zum Beispiel Sterne, Planeten, Kometen und Asteroiden., der selbst leuchtet. Während der meisten Zeit ihres Dasein werden Sterne durch zwei widerstreitende Kräfte im Gleichgewicht gehalten: durch die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit., die den Stern zusammenzudrücken sucht, und durch den Strahlungsdruck, der durch Kernfusionsprozesse im Inneren entsteht und die Gaskugel auseinanderzutreiben versucht. Unterschiede zwischen den Sternen und ihren Entwicklungswegen kommen im Wesentlichen durch ihre unterschiedliche MasseDie Menge Materie, die ein Körper enthält. Sie ist eine grundlegende Eigenschaft der Materie und die Ursache der Anziehung von Materie über die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit.. zustande. also Rußwolken in unsere Richtung ausgestoßen. Im Laufe der Zeit breiten sich diese Staubwolken weiter aus, weil sie durch den Strahlungsdruck, den der SternEin aus Gasen bestehender HimmelskörperAllgemeiner Begriff für alle materiellen Objekte im Weltraum, wie zum Beispiel Sterne, Planeten, Kometen und Asteroiden., der selbst leuchtet. Während der meisten Zeit ihres Dasein werden Sterne durch zwei widerstreitende Kräfte im Gleichgewicht gehalten: durch die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit., die den Stern zusammenzudrücken sucht, und durch den Strahlungsdruck, der durch Kernfusionsprozesse im Inneren entsteht und die Gaskugel auseinanderzutreiben versucht. Unterschiede zwischen den Sternen und ihren Entwicklungswegen kommen im Wesentlichen durch ihre unterschiedliche MasseDie Menge Materie, die ein Körper enthält. Sie ist eine grundlegende Eigenschaft der Materie und die Ursache der Anziehung von Materie über die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit.. zustande. auf sie ausübt, weggedrückt werden. Dadurch lichten sich die Wolken schließlich an manchen Stellen und geben nach und nach die Sicht auf die Sternoberfläche wieder frei.

In welcher Entwicklungsphase befindet sich R CrB?

Während wir die Ursache des Lichtwechsels von R Coronae Borealis inzwischen gut verstehen, sind noch viele Fragen zur Entstehung und Entwicklung dieses Sterntyps ungelöst.

Im Wesentlichen gibt es heute zwei unterschiedliche Modelle als Erklärungsansätze:

Entweder entstanden R-CrB-Sterne aus der Verschmelzung zweier Weißer Zwerge, von denen der eine reich an Kohlenstoff und Sauerstoff war und der andere viel Helium enthielt. Dieses Modell ist in der Fachliteratur als DD-Modell bekannt (für englisch: double degenerate, doppelt entartet). Oder sie haben als Einzelsterne eine Entwicklungsphase erreicht, in der sie nach der Bildung eines planetarischen Nebels nun einen finalen Helium-Blitz in der Energieerzeugung durchlaufen haben. Dieses ist das FF-Modell (für englisch: final flash, finaler Blitz).

eso0734a

So wie in dieser künstlerischen Illustration könnte es aussehen, wenn ein R-Coronae-Borealis-Stern Schwaden von Rußpartikeln ausstößt, die seine Helligkeit drastisch reduzieren. (Bild: ESO)

Kurz erklärt: R-Coronae-Borealis-Sterne

Name und Häufigkeit: Benannt ist diese seltene Klasse von veränderlichen Sternen nach dem Protoyp R Coronae Borealis im Sternbild Nördliche Krone (Corona Borealis). Abkürzung: R-CrB- oder RCB-Sterne. Nur etwa 150 Sterne dieses Typs sind in der Galaxis bekannt.

Lichtkurve: Die scheinbare Helligkeit von R-CrB-Sternen liegt die meiste Zeit beim Maximalwert, der nur wenig schwankt. Doch kann sie unvermittelt um zwei bis acht Magnituden absinken. Diese Einbrüche erfolgen rasch und halten für Wochen, Monate oder sogar Jahre an, wobei die Helligkeit unregelmäßig flackert; der Wiederanstieg zum Maximalwert erfolgt langsam.

Physikalische Eigenschaften: R-CrB-Sterne sind Überriesen mit hoher Leuchtkraft. Ihre Oberflächentemperatur liegt zumeist zwischen 5000 und 7000 Kelvin, ihr Spektraltyp zwischen F und G. Einige wenige R-CrB-Sterne sind allerdings deutlich kühler bzw. heißer. Allen gemein ist, dass ihre Atmosphären zu etwa 98 Prozent aus Helium bestehen. Gegenüber der Sonne ist der Anteil von Wasserstoff extrem gering, derjenige von Kohlenstoff und anderen schweren Elementen stark erhöht. Auch die Isotopenverhältnisse unterscheiden sich.

Ursache des Lichtwechsels: Einzelne Ausbrüche schleudern kohlenstoffreiches Gas von der Sternoberfläche weg. Ein Teil des Kohlenstoffs kondensiert und bildet kleine Rußpartikel. Befinden sich solche Rußschwaden in Sichtlinie zur Erde, verdunkelt sich der Stern. Erst nach und nach treibt der Strahlungsdruck die Wolken weiter nach außen und verdünnt sie.

Entstehung und Entwicklung: Im Wesentlichen gibt es zwei Modelle:

  • Die Mehrzahl der R-CrB-Sterne ist vermutlich durch Verschmelzen von zwei massearmen Weißen Zwergen entstanden, von denen der masseärmere hauptsächlich aus Helium bestand, der andere überwiegend aus Kohlenstoff und Sauerstoff. In diesem DD-Modell (Englisch: double degenerate, doppelt entartet) wären damit R-CrB-Sterne das massearme Pendant zu Supernovae des Typs Ia.
  • Ein kleinerer Anteil der R-CrB-Sterne hat sich wohl aus alten Einzelsternen entwickelt, die gerade dabei waren, sich von einem AGB-Stern zu einem heißen Zentralstern eines planetarischen Nebels zu wandeln. Durch ein letztes Zünden der Heliumfusion blähte sich der Stern nochmals zu einem kühlen Überriesen auf (FF-Modell, nach final flash, letztes Zünden).

Das DD-Modell: Aus zwei Zwergen wird ein Riese

Das Kürzel DD steht für das Englische double degenerate, was sich mit doppelt entartet übersetzen lässt. Mit Entartung bezeichnen die Physiker einen besonderen quantenmechanischen Zustand von Elektronen, der im Innern von Weißen Zwergen vorliegt.

Weiße Zwerge sind die kompakten Reste von Sternen, deren Brennstoff für die KernfusionDie Verschmelzung von Atomkernen zu schwereren Kernen, wobei im Allgemeinen EnergieEine fundamentale physikalische Größe, welche die Fähigkeit eines Systems beschreibt, Arbeit zu verrichten. Die Gesamtenergie eines abgeschlossenen Systems bleibt immer konstant (Energieerhaltungssatz), doch können einzelne Energieformen in andere umgewandelt werden. freigesetzt wird. Da für die Verschmelzung die elektromagnetische Abstoßung der positiv geladenen Atomkerne überwunden werden muss, ist Kernfusion nur bei sehr hoher Temperatur (hoher kinetischer EnergieEine fundamentale physikalische Größe, welche die Fähigkeit eines Systems beschreibt, Arbeit zu verrichten. Die Gesamtenergie eines abgeschlossenen Systems bleibt immer konstant (Energieerhaltungssatz), doch können einzelne Energieformen in andere umgewandelt werden.) und hoher Stoßwahrscheinlichkeit der Kerne (hoher Dichte) möglich. Die Fusion von Wasserstoff zu Helium ist die wichtigste Energiequelle von Sternen. Im Laufe der Zeit werden im Zentralbereich eines Sterns immer schwerere Kerne gebildet, bis hin zum Eisen. erschöpft ist und die sozusagen nur noch ihren vorhandenen Energievorrat über lange Zeit als LichtDer für das menschliche Auge sichtbare Bereich des elektromagnetischen Spektrums im Wellenlängenbereich zwischen etwa 380 nm (blau) und 780 nm (rot). Im weiteren Sinne auch das an diesen Spektralbereich angrenzende UV-Licht und Infrarotlicht. und Wärmestrahlung abstrahlen. Gewöhnlich bestehen sie hauptsächlich aus Sauerstoff (im Kern) und Kohlenstoff (in einer Schale darüber) mit nur einer dünnen äußeren Schicht aus Helium oder Wasserstoff. In engen Doppelsternsystemen mit Massenaustausch kann es jedoch vorkommen, dass sich eine der beiden Komponenten, wenn sie anfangs weniger als etwa eine halbe Sonnenmasse hatte, letztlich in einen nur aus Helium bestehenden Weißen Zwerg entwickelt.

Im Szenario des DD-Modells ist nun der Vorläufer eines R-CrB-Sterns ein solches Doppelsternsystem aus einem heliumreichen Weißen Zwerg und einem gewöhnlichen Weißen Zwerg. Nach und nach werden sich diese beiden Komponenten immer näher kommen, weil ihre Umlaufbahn durch Abstrahlung von GravitationswellenSich wellenförmig mit Lichtgeschwindigkeit ausbreitende Störungen im Gravitationsfeld. Im Grunde erzeugt jede beschleunigte Masse Gravitationswellen, doch wegen der geringen Stärke der GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit. erzeugen nur sehr energiereiche Phänomene wie z.B. die Verschmelzung von Neutronensternen oder Schwarzen Löchern messbare Gravitationswellen. EnergieEine fundamentale physikalische Größe, welche die Fähigkeit eines Systems beschreibt, Arbeit zu verrichten. Die Gesamtenergie eines abgeschlossenen Systems bleibt immer konstant (Energieerhaltungssatz), doch können einzelne Energieformen in andere umgewandelt werden. verliert, bis sie schließlich MasseDie Menge Materie, die ein Körper enthält. Sie ist eine grundlegende Eigenschaft der Materie und die Ursache der Anziehung von Materie über die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit.. austauschen und miteinander verschmelzen.

Im neu entstehenden HimmelskörperAllgemeiner Begriff für alle materiellen Objekte im Weltraum, wie zum Beispiel Sterne, Planeten, Kometen und Asteroiden. wird das Helium des MasseDie Menge Materie, die ein Körper enthält. Sie ist eine grundlegende Eigenschaft der Materie und die Ursache der Anziehung von Materie über die GravitationDie Anziehungskraft (Schwerkraft), die allgemein zwischen materiellen Körpern wirkt. Massen ziehen einander mit einer Kraft an, die proportional dem Produkt der beiden Massen und umgekehrt proportional zum Quadrat ihrer Entfernung ist. Diesen Zusammenhang beschreibt das von Isaac Newton gefundene Gravitationsgesetz. Dieses ergibt sich als klassischer Grenzfall aus der allgemeinen Relativitätstheorie von Albert Einstein, die auch für relativistische Geschwindigkeiten gilt. Die Gravitation ist die schwächste der vier fundamentalen Kräfte in der Natur, wirkt aber unendlich weit..ärmeren Weißen Zwergs die äußere Hülle bilden, in die sich Kohlenstoff aus dem massereicheren Weißen Zwerg mischt. Bereits in einer frühen Phase des Masseaustauschs ist die Fusion von Helium zu erwarten. Die dadurch freiwerdende EnergieEine fundamentale physikalische Größe, welche die Fähigkeit eines Systems beschreibt, Arbeit zu verrichten. Die Gesamtenergie eines abgeschlossenen Systems bleibt immer konstant (Energieerhaltungssatz), doch können einzelne Energieformen in andere umgewandelt werden. bläht die Heliumhülle auf, so dass sie bereits vor der vollständigen Verschmelzung beide Komponenten einhüllt. Von außen erscheint das Objekt als Riesenstern.

Da keines der beiden Ursprungsobjekte in nennenswertem Umfang über Wasserstoff verfügte, ist automatisch klar, dass auch der neue HimmelskörperAllgemeiner Begriff für alle materiellen Objekte im Weltraum, wie zum Beispiel Sterne, Planeten, Kometen und Asteroiden. kaum Wasserstoff enthält. So lässt sich die chemische Zusammensetzung eines R-CrB-Sterns gut erklären. Insbesondere solche R-CrB-Sterne, in denen ein ungewöhnlich hoher Anteil des Isotops Sauerstoff-18 beobachtet wird, sind gute Kandidaten für das DD-Modell.

Sollte sich dieses Modell bestätigen, dann wären R-CrB-Sterne das massearme Analogon zu Supernovae Ia. Diese entstehen nämlich ebenfalls durch Verschmelzen von Weißen Zwergen; allerdings sind in diesem Falle die Massen der beiden Ausgangssterne größer.

wd merger

Ausgangssituation im DD-Modell sind zwei Weiße Zwerge unterschiedlicher chemischer Zusammensetzung, die ein enges Doppelsternsystem bilden. Nach und nach kommen sie sich so nahe, dass Helium vom masseärmeren Weißen Zwerg auf die andere Komponente überströmt, die hauptsächlich aus Kohlenstoff und Sauerstoff besteht. Nachdem die Fusion von Helium eingesetzt hat, bildet sich eine Hülle, die beide Komponenten einschließt und sich auf die Dimension eines Riesensterns ausweitet, der die Merkmale eines R-Coronae-Borealis-Sterns zeigt. (Bild: NASA/STScI/Dana Berry)

Das FF-Modell: Ein wiedergeborener Riese

Das Kürzel FF steht für das Englische final flash und meint das letzte explosionsartige Zünden einer Kernfusion in der Heliumschale eines Riesensterns in einer Spätphase seiner Entwicklung.

Im Hertzsprung-Russell-Diagramm, mit dem sich die Entwicklungswege von Sternen unterschiedlicher Masse nachvollziehen lassen, bewegt sich ein solcher Stern gerade vom asymptotischen Riesenast (englisch: asymptotic giant branch, AGB) hin zum heißen Zentralstern eines planetarischen Nebels. Er hat also die Phasen des Wasserstoff- und des Heliumbrennens bereits hinter sich und ist gerade dabei, zu einem Weißen Zwerg zu werden.

In dieser Post-AGB-Phase kann die Fusion von Helium aber erneut zünden. Denn die Rate, mit der diese Reaktion abläuft, ist äußerst temperaturempfindlich. Der aus einem solchen Helium-Blitz resultierende thermische Puls treibt die äußeren Gasschichten nach außen, wodurch sich der Stern nochmals zu einem kühlen Überriesen aufbläht. Astronomen sprechen dann auch von einem “wiedergeborenen” Riesenstern. Diesem Stadium entspräche die Phase eines R-CrB-Sterns.

Kommen beide Entwicklungswege vor?

In der aktuellen Forschung mehren sich die Hinweise, dass sich die meisten R-CrB-Sterne tatsächlich durch das DD-Modell, also durch eine Verschmelzung von zwei Weißen Zwergen, erklären lassen. Für sie ist eine Masse im Bereich von 0,8 bis 0,9 Sonnenmassen zu erwarten. Ein kleinerer Teil von ihnen scheint allerdings als Einzelstern gemäß des FF-Modells entstanden zu sein; für sie beträgt die aus dem Modell erwartete Masse nur 0,55 bis 0,6 Sonnenmassen.

Auf welche Art nun R Coronae Borealis, der Prototyp dieser Veränderlichenklasse, entstanden ist, lässt sich noch nicht abschließend sagen. Das Vorhandensein von Lithium in der Atmosphäre von R CrB zeigt jedenfalls, dass es vor nicht allzu langer Zeit Heliumbrennen gegeben haben muss. Leider kann der Anteil des Isotops Sauerstoff-18 (ein Indikator für das DD-Modell) in diesem Stern nicht direkt aus dem Spektrum bestimmt werden, denn wegen der hohen Temperatur enthält seine Atmosphäre kein Kohlenstoffmonoxid CO. Eine ausgedehnte Staubhülle, die sich mehrere Lichtjahre um R CrB erstreckt und die über ihre Strahlung im fernen Infrarot nachzuweisen war, könnte ein Überbleibsel eines vor rund 10 000 Jahren entstandenen planetarischen Nebels sein.

Cookie-Einstellungen
Auf dieser Website werden Cookie verwendet. Diese werden für den Betrieb der Website benötigt oder helfen uns dabei, die Website zu verbessern.
Alle Cookies zulassen
Auswahl speichern
Individuelle Einstellungen
Individuelle Einstellungen
Dies ist eine Übersicht aller Cookies, die auf der Website verwendet werden. Sie haben die Möglichkeit, individuelle Cookie-Einstellungen vorzunehmen. Geben Sie einzelnen Cookies oder ganzen Gruppen Ihre Einwilligung. Essentielle Cookies lassen sich nicht deaktivieren.
Speichern
Abbrechen
Essenziell (1)
Essenzielle Cookies werden für die grundlegende Funktionalität der Website benötigt.
Cookies anzeigen
Statistik (1)
Statistik Cookies tracken den Nutzer und das dazugehörige Surfverhalten um die Nutzererfahrung zu verbessern.
Cookies anzeigen